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AN ANALYTICAL STUDY OF THE PROPAGATION OF PRESSURE
WAVES IN LIQUID HYDROGEN-VAPOR MIXTURES

by
J. M. Clinch and H. B. Karplus

ABSTRACT 9'2 l Lé?

The complex sound propagation constant is calculated for liquid-
vapor mixtures, Sound velocity and attenuation, related to the real and
imaginary components of this constant, are paysically measurable quanti-
ties, governed by the state and structure of the mixture. Low frequency
behavior is shown to be a function of the mixture quality or relative masses
of the phases. At intermediate frequencies the propagation depends on the
sound frequency and also on the size distribution of the discontinuous phase.
At high frequency the propagation is essentially a function of the dominant
phase. Early hopes of utilizing low frequencies to determine the quality in
two-phase flow directly are circumscribed by effects such as noise, pipe
wall heat transfer, standing waves, etc., which set limits to the lowest
frequency which may be used. At intermediate frequencies the effects of
size distrikbutio.. and quality are difficult to separate., The high frequency
velocity is likely to be useful in determining the flow velocity of one of the

phases so that other parameters of interest in two-phase flow may be

deduced, M’V\'
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I INTRODUCTION

The flow of two-phase fluids has in the past been the subject of
numerous investigations. Much of this work has been concerned with estab-
lishing the laws which govern the behavior of two-phase fluids under varying
flow conditions. Among the flow properties of two-phase fluids to be mea-
sured, a knowledge of the relative masses of the phases or quality is of prime
importance,

In principle the quality could be determined by measuring
some fluid property which depends on it. One such fluid property which de-
pends on the quality is the velocity of sound in the two-phase fluid. Under
certain simplifying assumptions the velocity of sound in a two-phase fluid is
related directly to the quality. These assumpiions require that tkermodyna-
mic equilitrium exists between the phases during sound propagaticn. When
equilibrium prevails the velocity of sound as a function of quality may be cal-
culated from the known thermodynamic properties of the constituent phases.
The equilibriurn condition is reached onlv at vc.y iow sound frequencies.

it is shown in Section IV that there is a range of frequencies
over which the sound velocit'y depe. ds not only upon the guality but also upon
the manner in which the phases are distributed in the mixture and alzo the
frequency of the sound., Above this frequency range, the sound velocity be-
comes independent of the quality and assumes the value appropriate to that
of the predominant phase. Thus to be able to predict the quality from mea-
surements of the sound velocity some knbwledge of the phase distribution is
required. It is the object of this ;.nvestigation to study analytically.the feasi-

bility of using acoustical techniques to measure the quality of two-phase fluid



flow, Whilst the particular requirement of the investigation was to consider
the propagation of pressure waves, both continuous and shock waves, in a
mixture of boiling liquid hydrogen and its saturated vapor, the approach is
quite general and is applicable to any two-phase fluid.

The following analysis of pressure wave propagation in two-
phase hydrogen has been restricted to a homogeneous mixture of vapor and
liquid; the liquid being dispersed uniformly throughout the vapor phase in the
form of very small droplets as for example in atmospheric fog. This work-
ing model of the two-phase fluid was chosen for two reascas; firstly, becaus
there is some evidence that the fog fiow regime will predominate over a wide
range of flow conditions, and secondly, because the underlying physical pro-
cesses which occur between the phases during wave propagation can be more

readily understood.



II. PROPAGATION OF PRESSURE FLUCTUATIONS IN A FLUID

A. Definition

The concept of sound implies the propagation of a pressure
disturbance of small amplitude which undergoes no significant change in form
during propagation,’

It is often convenient to represent pressure disturbances in the
form of a Fourier series containing a large number of individual components.

Thus a pressure disturbance in the fluid is given by:
P = plixt) (2.1)

where p (x,t) is the pressure associated with the disturbance at any point x

and time t may be transformed to

—
P = 2 pj exp iwj (t - x/cj) (2.2)
J

The propagation constant, c, may in general be complex.
This would imply wave attenuation

o cr‘l (1 + ip') (2.3)

In this case one component of the Fourier series or the propa-

-
i N
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gation of a single progressive sinusoidal wave would be



P = P, exp (- ax) exp iw (t - x/cr) (2.4)
where a = 2np'/\ = p/\ and \ =2rc /u =c _/f, and c,. is the sound velocit
By solving the equations of fluid dyna:nics for the conservatic
of mass and momentum for an element of fluid which undergoes changes in
pressure and density with time the pressure wave equation may be derived.

This wave equation yields a value for the constant ¢ which is defined by:

2
2 3% (2.5)

¢ = (9 {2.6)

The rate of change of pressure with density may be related tc
the thermodynamic properties of the fluid and the complex parameter, c,
may be found from the measurable propercies c. and a as given by equatior
(2.4). Conversely, it is possible in principle to measure tahe sound velozcity
and attenuation and derive such properties as density and quality (if a ‘wo-
phase fluid) upon which the measured values depend.

The complexity of the problem is related to the manner in
which the rate of change of pressure with density depends on the speed with
which the pressure changes take place. In other words, the sound velocity,

c .. and the attenuation per wavelength, p, are frequency dependent. In a



two-phase fluid mixture this time or frequency dependence is a function of
how the phases are distributed both in size and space. To provide a better
understanding of the physical principies involved in pressure wave propaga-
tion consider the following problem: A fluid contained in a cylinder fitted at
one end with a piston is compressed when the piston moves inward, The den-
sity increaser and heat is generated. For a long cylinder a sudden motion of

the piston would compress only the fluid in contact with it, The resulting

4]

pressure increase then compresses the adjacent element of fluid and a pre
sure disturbance is propagated. The speed of the propagation as defined by
equation 2,6 is the ratio of the applied force to the fluid inertia.

Next the heat generated by compression affects the stiffness
of the medium, that is the pressure required for a given change in density.
In gases the heat generated is quite large since gases have a large coefficient
of thermal expansion. In liquids and solids the effect is usually small. In a
liquid-vapor mixture, however, the heat generated in the vapor is also trans-
ferred to the liquid. When the liquid and vapor are composed of the same
chemical substance, the problem is complicated by thea change of phase which
can take place. In this case, liquid can evaporate and the vapor can condense
producing la: e changes in density with very small changes in pressure, If
the pressure fluctuations are slow enough then the mixture will at each in-
stant be in equilibrium and the constant ¢ in equation 2,2 becomes a real
number with zero wave attenuation. However, when the pressure fluctuations
occur more rapidly the heat of compression liberated in the vapor cannot be
conduct .d to the liquid before the rarefaction part of the acoustic cycle ap-

pears. In the limit at very high frequencies the pressure fluctuations may be



too fast to permit both heat transfer and phase change to take place. Because
of this it is necessary to distinguish between the different vapor and liquid

flow regimes as well as different frequency regions,

B. Small Amplitude Pressure Waves- -Low Frequeucy Approximation

The propagation of slowly varying (low frequency) pressure
waves in an infinite medium consisting of a mixture of liquid and gas uniform-
ly dispersed within each other is considered, The assumption is implicitly
made that all changes of phase and temperature occurring at the interface be-
tween the two phases takes place rapidly compared with the rate at which the
pressure is changing. It is further assumed that, as is the case for a single
phased fluid, the increased wavelength or reduced frequency accounts for the
isolation of the compressed and rarefied regions of the wave, Because of
this it is permissible to neglect heat exchange between regions of compres-
sion and rarefaction. In other words, the process is adiabatic. Further-
more, as there is no loss of acoustic energy it is also reversible and adiaba-
tic. The rate of change of pressure with density, thcrefore, takes place
isentropically and (ép/}p)s at constant entropy will‘ be required to calculate
the sound velocity c defined by equation 2,6,

Calculations have previously been carried out by many authors
(Refs. 1 and 2) for the equilibrium sound velocity in two-phase mixtures.
Karplus (Ref. 1), for example, shows that the equilibrium sound velocity ¢

is in general given by:



V., ds dv VvV, dS dv
cZ = (qvfg + Vf)2 q _fg “fg  _fg + g _f _ _f (2.7)
sfg dp dp sfg dp dp

The quantities vfg’ ng, Vf, and Sf are defined in the list of symbols. The .'
actual values of these quantities as a function of pressure for both the satura-
ted liquid and vapor were obtained from published thermodynamic data (Ref.
3) for 20.4°K equilibrium hydrogen. The slopes dV/dp and dS/dp were
obtained by interpolation of thermodynamic data on the saturation line. The
results of the calculations for the equilibrium low frequency sound velocity

c, as a function of pressure and quality are shown graphically in Figs. 1I-1
and II-2. It is seen that the sound velocity c, is a marked function of quaflity
q but is relatively independent of the ambient pressure.

At low values of the quality, the sound velocity increases
monotonically with pressure. Abcve quality of 0. 3, however, there appears.
to be a maximum which lies in the vicinity of 60 psi for qualities approach-
ing unity. Also of interest is the product pc, plotted in Fig. I-2. This
quantity is equal to the mass flow per unit area of a fluid flowing through a
pipe with a sonic velocity. Since this study was initiated values of pc as a
function of pressure and quality have been reported by Smith (Ref. 4) and also
by Harry (Ref. 5). It is found that there is agreement between these and the
prescnt results within about 29,. Differences are attributed to the method
of estimating the slopes of the entropy .-pressure and specific volume ~pres-

sure curves,
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C. Large Amplitude Pressure Waves--Shock Wave Approximation

The small amplitude approximation used up to this point implies
very s-n.il changes in the state of the medium (pressure, density, tempera-
ture, etc.), and no change in its properties as, for example, the sound velo-
city, Changes in properties must be taken into account for large amplitude
pressure disturbances.

In this section the propagation of a single large amplitude pres-
sure step in a two-phase mixture is considered. The analysis utilizes the
conventional Rankine- Hugoniot 1 :lations (Ref. 6) for shock waves even though
it is well known that true shocks will degenerate into slowly rising steps in a
two-phase fluid. The derivation of the Rankine-Hugoniot equations does not
make any assumption concerning the rate of rise of the pressure but merely
assumes continuity of mass and the proportionality of the acceleration to the
applied pressure difference.

The change in the rate of rise of the pressure makes the defini-
t'un of the propagation velocity ot the wave front uncertain in that its separate
comporents propagate at different velocities. The propagation velocity of the
step will be an average velocity across a wave front whose profile is contin-
vally changing. However, the particle velocity and the state (density, tem-
perature, enthalpy, etc.) of the two-phase mixture behind the step can be
accurately predicted.

The Rankine-Hugoniot equations relate the enthalpy H, intermnal
energy E, pressure p, velocity u, and specific volurue V, in the two regions
in front of And behind the step. It is convenient to choose a coordinate system
fixed with respect to the step so that the velocity u; represents the relative

velocity of the step with respect to the ambient medium and u, the relative

10



particle velocity of the medium behind the step. The particle velocity behind
the step with respect to a coordinate fixed in the ambient medium is designat-
ed as Uz =4y - ug.

The Rankine-Hugoniot relations may be stated analytically as

Hy - H = (p, - py}(V + VZ)/Z (2. 8a)
E, -E; = (p2 + pl)(V1 - VZ)/Z (2.8b)
2 -

u, = Vlz(p2 - pl)/(V1 - VZ) {2.9)

2
U3 = (PZ - pl)(vl - VZ) (2.10)

Suppose we consider a two-phase mixture of pressure, P> and
density, 1/V;, in which a pressure step, B, - Py, is propagated. The specific
volume behind the ''shock' can be found since V2 and H2 are not ndependent

variables but are given by

\4 = qZV

—

+ Vv and H, = qZHng + H,,

2ig 2f =2

Now szg, sz, Hng’ HZf are all fixed at the given pressure B, so that re-

arrangement of equation 2,.8a gives

V., (p> - py)/27 + H,. V. /V + H, - H

11



Vilop + 020 + Epe VarlVog, + Ep - Eyy

v, = (2. 11%)
(p, + Pp)/23 + E:ng/v?_fg
and
{ Y - - .
Vy + Vo (e, - p))/2Y + H) - Hy, 2 1243
P = (2. 12a}
- szg p, - P)/2T + Hng
(V, - Vo.l(p, + P,)/2] + E, - E
q = = 217 \P2 1 =1 2f (2. 12b}
/
+V2fg(p2 +py)fed + Eng

Substituting in equation 2.9 gives

2
V. "(H,. -VY,. (p,-p;)/20)(p, - p,)
ulz i} A 2¢g 2ig ‘P2 1 2 1 (2. 13)

Vi Hpgg - Vogg Py - 0y)/3) - Vi (H) - Hy) - Ve

It is seen from Figs. I1-4 and II-5 that the velocity of propaga-
tion for sh-cks is identically equal to the velocity of sound (see Section II-B)
when the height of the pressure step, P, - Py» approaches zero., The equivai-
ence of equations 2. i3 and 2.7 can also be demonstrated analytically.

The above derivationr, of course, becomes invalid if the pres-
sure step is sufficiently large to completely evaporate or condense ane of the
phases; which phase is reduced by the pressure step depends on the initial
conditions. If the vapor concentration is initially high then a pressure in-
crease causes the adiabatic temperature rise to evaporate come of the liquid.
For high liquid concentration the large thermal capacity of the liquid reduces

the temperature rise and vapor condenses. Figure II-6 shows the superpositi

12
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of initial and final pressures and densities after the passage of a shock., They
are seen to lie fairly close to lines of equal entropy which are shown as solid
lines,

For shocks which condense all the vapor the compressibility of
the liquid is neglected, and it is assumed that V2 = V¢ Substitution in equa-
tion 2.9 leads to

2 2
up = ey - p) V) /aVyg, (2. 14)

Equations 2.13 and 2.14 where applicable are plotted for dif-
ferent initial pressures, Py» in Figs, II-3 ‘through II-5. The 'shock" velo-
city is seen to increase with increasing positive pressure step and decreases
if progressively larger negative steps are applied. The decreasing velocity
with an applied negative step implies that the shape of the step cannot possibly
be maintained as the small initial part cf the step travels faster than the
larger parts of the step. On the positive side conditions would appear to be
better than for a pure gas for shock formation, because the rate of increase
of velocity is much higher than in pure gases. Also seen on Figs. II-3 through
II-5 are sharp kinks for the low quality initial condition, . This is the point at
which all the liquid has condensed and no appreciable further change of den-
sity takes place, transition from equation 2,13 to equation 2.14. In this
region the rate of velocity increase becomes really large, and without further
information one might expect particularly rapid shock formation. Experi-
ments (Ref. 1) using boiling water disprove this idea. The exchange of heat
between the phases delays the pulse rise and an incident shock is slowed to a

gradually increasing pressure front also in this region,

17



D. Pressure Wave Propagation--High Frequency Approximation

Experimental data have been reported which indizate that the
measured sound velocity in two-phase mixtures can be quite different from
those calculated assuming squilibrium between the phases. Clinch (Ref. 2),
for example, measured the sound velocity in high quality wet steam at ultra-
sounic frequencies. His results showed that the sound velocity is independent
of the quality and remained at the value appropriate to the dry steam at the
temperature and pressure at which the measurements were made, This re-
sult has recently been verified by Collingham (Ref. 7) who measured the pro-
pagation velocity of negative shock waves in steam-water mixtures.

To explain the disparity between the experimental data at high
frequencies and the calculated low frequency equilibrium sound velocity,
Clinch proposed a frequency dependence for the sound velocity. This fre-
quency dependence is attributed to departures from equilibrium due to irag
and heat and mass transfer between the phases. An analysis to include these
effects as the reasons for the velocity dependence upon frequency, i.e. dis-
persion, is given in Section IV, In other words at high frequencies, the effec
of phase drag and heat and mass transfer is to prevent equilibrium from be-
ing established in the period of the acoustic cycle. Thus the high frequency
propagation velocity is essentially given by the tnermodynamic properties of
the dominant ' se; the other phase making no contribution whatsoever to the
velocity. For i -ance, in a mixture of liquid droplets suspended in a large
volume of vapor, the high frequency sound velocity is that of the vapor- phase

alone, This concept is discussed further in Section IV.

18



Calculations were made of the sound velocity in pure hydrogen
vapor close to the saturation line over a large pressure range. The thermo-
dynamic properties of the vapor used to make these calculations were taken
from Reference 3 for 20.4°K equilibrium hydrogen. To compute the high

frequency sound velocity Cpo », the following relationship was used:

- 2
l = op) _ e o) _ el ,E [J/E) (2. 15)
or ks p \OE/ p E H 0E Jg

o

where H and E are the enthalpy and intkrnal energy per unit mass of the

hydrogen vapor. This relationship (2. 15) for c_, is derived in Appendix G.

00
The function EZ [H [a(H/E)/a E]s is found to vary slowly and remains less
than + 0, 15-over the range of interest.

| B-_y' plotting this function and using graphical interpolation, fairly
accurate values of the sound velocity in'the. pure vapor were obtained. The
sound velocity cpq, ils shown plotted against the vapor pressure'in Fi‘g. II-7.
The sound velocit;r is seen to increase rapidly with pressure in the low pres-

sure range. Abcve 50 psia, there is little further change in velocity with

pressure until the critical region is approached.
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III. RELAXATION

A, Introduc*ion

In a polyatomic gas the wave propagation constants are derived
classically in terms of the internal and translational energies of the mole-
cules, and the relaxation time required for equilibrium to be established be-
tween the internal and external energies.

For a two-phase mixture of liquid and vapor estimates of relax-
ation times for heat transfer between the vapor and liquid, together with the
low and high frequency sound velocities, calculated in Section II-B and D
respectively, yield approximate estimates of the sound velocity as a function
of frequency. The dependence of sound velocity upon the frequency is shown
further by taking into account drag and heat conduction between the phases.
This is discussed in Section IV-A and B.

The initial approximat_‘ion neglecting mass transfer are illustrat-
ed graphically. More complex functions are derived for mass transfer (Ap-
pendices A and B). These involve the temperature gradient in the vicinity of
the interfaces and would require a computer program, This is beyond the

scope of the present program,

B. Relaxation in Gases--Classical Approach

There is quite an extensive literature on wave propagation in

fluids in which equilibrium conditions are not reached instantaneously. A

.

21



good summary is found in Herzfeld and Litovitz (Ref. 8). More general treat-
ments are due to Meixner (Ref. 9) and others (Ref. 10).

The basic assumption in all these treatments involves the return
to an equilibrium condition at a rate linearly proportional to the displacement
from it. This assumption leads to a loga'rithmic approach to equilibrium in
terms of a specific time constant., The classical treatment of relaxation can-
not be applied very easily to two-phasc fluids. Thus, in order to throw some
light on the principles involved, the general case of relaxation in a polyatomic
gas is given as an exarnple.

In the treatment of relaxation in polyatomic gases account is
taken of the following:

1, The rotational and vibrational riodes of the atoms in the

molecule

2. If the number n of molecules in the excited state differs

from the equilibrium number n_, then tne rate of change

of n is linearly proportional to (n - no)
dn/dt = (n - no)/qj

n) = ne th (3.1)

(n - o o

1s known as the time constant or relaxation time, This

may he writtea in terms of an internal energy E, and equili-

brium i1nternal energy Eio

E. - E, = E, e_t/'1
i io io
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3. The equation of state relating pressure, density and tem-
perature is a function of the temperature associated with
the translation energy only and does not depend on the in-
ternal energy of the molecuies. The specific heats of the
gas are then defined in terms of the translational enthalpy,

H, o and internal energy, E,.

H = Htr+Ei

{0H/dT) = C

po
(3H, /0T) = Com
(JE,/OT) = C,
then,
Coo = Cow * S
also
Cvo ® Cwe * Cwi

Combining these equations yields the complex propagation velo-
city ¢ at angular frequency, w, in terms of the zero frequency velocity and
the specific heats of the gas:

-1

2 . .
(eg/e)” = (1 + w‘L’CVtr/CVO)(l + w-rcptrlcpo)
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This gives the real component of velocity <. and absorption

per wavelength p provided the latter is not too large.

2 2 2 2., .2, 2
e, = ey H (e - e ThiwTh) /Ll + (0 T") ) (3.2)
and
b= 2u w’L"”/[l + (wT'") Z;] (3.3)
where
B, = Tley /co - colcm) (3.4)

Fm is the maximum absorption per unit wavelength, <, is the sound velocity

at very low frequencies, and c,, is the sound velocity at very high frequenc-
" o= (1 - Ci/CVo) = inflexion point on velocity curve
Tt i L R - 3 : 3
" = (e, /co) T = maximum point or absorption curve
It is seen from equation (3. 2) that to obtain the sound velocity
and attenuation at any given frequency, w, a knowledge of the low and high
frequency sound velocities as well as the relaxation time are required. Thi.

theory is, of course, valid only if one relaxation iime is present. The gen-

g¢ral forms of these functions are plotted in Figs. III-1 and III-2.
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The existence of multiple relaxation times greatly complicates

the picture; examples (for two relaxation tirmes) of the velocity-frequency
Lo

function are shown in Fig. III-2. The relative magnitude of the absorption
due to the twe processes is used as a parameter. These plots in Figs. III-1
and 2 are intended to illustrate the fact that with more than one relaxation
time, it is very difficuit to predict the limiting value of the low frequency
sound velocity <o from a limited number of measurements at intermediate
frequencies. |

It has been shown in Section II-B that the low frequency velo-

city depends only on the quality; at intermediate frequency it depends on both

the quality and the time constants.

C. Relaxation Processes in Two-Phase Mixtures

To illustrate the order of magnitude of the time constants in-
volved, the mean temperature time functions of simple geometries subjected
to step functicn temperature changes at the geometrical boundarics are an-
alyzed. The geometries chosen are a sphere and a spherical shell. This
may ret resent liquid droplets in vapor or spherical bubbles in liquid. In a
model consisting of many uniformly spaced identical spherical droplets sur-
rounded by the vapor, heat transfer occurs at each boundary.

In the vapor there exists a neutral plane across which there is
no heat transfer. Attention may be focussed, therefore, on an individual
droplet surrounded by a vapor shell whose boundary undergoes a sudden tem-

perature change. The radii Rf and Rg of the erplet and vapor spheres are
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chosen such that the voluines of the two regions are in the same ratio as in

an arbitrary two-phase mixture of quality, q

(Rf/jo3 = 1 +pf/pg(l - 1lq) = M B (3.5)

The mean temperature Tm of a droplet when subjected to a
sudden surface temperature change from To to Ts is given by Appendix B,

Equation B-5.

o0
, 2 .2 .2
(T - TINT, - T ) = (6/x7) Z , /57 exp (- j tlqy) {3.6)
j=1 |
T = szlafnz

This function is plotted in Fig. III-3. This is, of course, not
simple relaxation, but may be considered to consist of an infinite number o
relaxation times "(f/jz, j being any integer. Figure III-3 shows that highe
order relaxation times contribute very little after a time t"—"‘t'f.

This permits consideration of a single relaxation time ’("f for
low frequencies, < l/Tf. For higher frequencies f >l/‘l:'f the effects of
several relaxaticn times have to be considered. At very high frequencies
f))l/'rf, there is very little heat transfer.

:.A{)pendix B-2 shows that if the spherical shell surrounding &
sphere of infinite thermal capacity suddenly changes its temperafure from °

to Ts’ then the mean temperature, Tm of the shell is
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>Q

2 2
T, - Ts 6M™ (1 - M) exp (- t/71 )
o s - g (3.7)
3 : 2, . 2
TO—Ts 1 - M _]:le(SInwj-M)
where M=R_.//R_and 7 =R 2 (M.2 - 1)/a w.z and w. is a root of the
g g f g J

~ equation

wiltanw. = 1 - M

J J

This function resembles that derived above for the sphe;'g, but
it has not been plotted separately. The effect of the higher order constants
is somewhat smaller than in the case of the sphere.

The time constants are seen to depend upon the radius R, of the
droplet. Numerical values of the time constant 'Z‘g in the vapor region were
calculated for a fog of liquid droplets suspended in vapor. These values for
the vapor shell may be compared with the relaxation times ’T.’f of the droplets
shown in Table I. The ratio 't,‘f/RfZ is given for three temperatures and
'(g/RfZ is also given for these same temperatures and for different values of
quality in Table II.

It is secen that the time constant for the vapor is generally longer
than in the liquid. The thermal diffusivity is greater for the liquid and in
most cases the distance between droplets is considerably larger than the drop-
let radius. An exception is noted for low quality-high temperature conditions.
In that case T  =54°R, q=0.1, and Rg/Rf is only 1,16, Evidently the
density of the two phases are approximately the same in this case, so thata

quality of 0.1 does not conform to the basic assumption of well separated

small droplets.
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TABLE I

TIME CONSTANTS OF DROPLETS AND SURROUNDING VAPOR

IN TERMS OF THE DROPLET RADIUS R

(M:croseconds per square micron)

f

or

(Seconds per square millimeter)

T = 25° 36°
8
Te/R; 0.5 0.51
2
’t‘g/Rf q = 0.1 1.94 0.65
2 IR 2 = 0.5 22.9 11,5
g f q hand . . .
2
’Té/R, q = 0.9 231.0 137.3
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TABLE 11

TIME CONSTANTS FOR VARYING DROPLET DIAMETERS

IN A HYDROGEN MIXTURE AT A SATURATION

TEMPERATURE OF 26°R

Diameter 2R

f

Quality q 2 p 20 p 200 p 2 mm
Independent 0.51 pus 0.051 ms 5.1 ms 0.51s
0.1 0.65 us 0.065 ms 6.5 ms 0.65 s
0.5 11.5 pus 1.15 ms 115.0 ms 11.5 s
0.9 137.3 s 13,7 ms 1370.0 ms 137.3 s
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It is seen that small droplets rapidly equalize in temperature,
If the droplets do not exceed a few microns in diameter it seems quite possi-
ble to select a measuring frequency of a few hundred cycles per second with
full assurance of being below the velocity dispersion region up to qualities of
about 0,9, As very high qualities are approached the separation of the drop-
lets become so large that other mechanisms of heat exchange including that
of convection and radiation must be included.

Droplets of several tens of microns in diameter have vapor re-
laxation times ’(’g of a few milliseconds up to qualities of 0.5. At 0.9
quality the vapor relaxation time is already in the tens of milliseconds.

Thus any measurement in the low frequency region where velocity disper-
sion is not eviderced would require frequencies with periods of hundreds of
milliseconds, that is, frequencies well below 10 cycles/sec. From Appendix
F it is seen that in this frequency region the effect of tube walls on sound
propagation must be taken into account; unless, of course, the tube has a
very large diameter, In other words the wall diameter must be large com-~
pared to the distance between droplets,

Other difficulties also present themselves for low frequency
measurements in tubes of finite length. Reflections from the ends of a tube
would be pronounced and measurements of a progressive wave in the pre-
sence of multiple tube reflections would be impossible, Of ccurse, the velo-
city could be determined by measuring the length of the standing wave pro-
duced by the wave and its reflection, However, the resolution becomes in-
adequate; a haif wavelength at 10 cycles/sec for a velocity of 500 ft/sec is
25 ft. Furthermore, standing waves of low frequencies would be difficult to

interpret in regions less than a2 half wavelength,
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It must be pointed out that the models used to obtain the vapor
relaxation times {Appendix B-2) are somewhat limited and only indicate or-
ders ol magnitude. However the marked dependence on droplet radius shows
that the uncertainty in knowing the precise droplet diameter would outweigh

that of the relaxation time of the particuiar droplet size.

D. Conclusions

The difficulty of measuring the quality in fog flow by an acoustic
technique may thus be related to the slowness with which the temperature
fluctuation penetrates the droplets. Low frequency sounds capable of probing
the individual droplets cannot be used for detailed analysis at distances small
compared with a wavelength. In very long pipes plane progressive waves can
be propagated and phase differences may be measured within limits set only
by the noise accompanying the flow,

To determine the quality from an intermediate frequency mea
surement it might be possible to predict the velocity-frequency function ac-
curateiy from the theory given in App_e_:ndm A and then extend this to a typical
droplet size distribution. However, if the droplet size distribution is already
known with sufficient accuracy there is no longer any need for a souad velo-
city measurement to determine quality.

Alternatively the sound velocity and attenuation measured over
a wide frequencv spectrum might be combined to yield data both on the quality
and droplet size distribution, However, the r.ature of attenuation measure-

ments does not permit measurements to be made over very small distances
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and from what has already been stated low frequency standing Qavea mea-
surements do not give adequate resolution,

Other acoustic techniques may find application, however, it
two-phase fluid flow research, It is well known that heat flux data and total
mass flow rate do not give all the information required to determine the flow
rates of the individual phases,because the slip rate, that is the difference be-
tween liquid and gas velocity is not known.

It may, however, be possible to use acoustic techniques to mea-
sure the flow velocity of the continuous phase of a two-phase mixture because,
at high frequencies, the velocity of sound is independent of the presence of
the discontinuous phase., Ultrasonic flow meters have been constructed based
on a measurement of the difference of the velocity of sound upstream and
downstream in the fluid. This difference may be measured in terms of the
phase of continuous waves or arrival time of pulses. Because high frequen-
cies are used, good resolution is possible; moreover, rzflections from the
ends of the pipes can be overcome. In conclusion, it appears that aconstic
techniques involving the direct measurement of quality have many serious
drawbacks in spite of their apparent attractiveness. However, the measure-
ment of the flow velocity of the continuous phase appears to be feasible and

likely to be of considerable importance in two-phase flow research,
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IV. A. VISCOSITY EFFECTS AT THE INTERFACE BETWEEN.THE PHASES

| Intreductic.,

Much of the past work on sound propagation in two-phase fluids
has been concerned with the attenuation of sound by particles suspended in
gases ard iiquids. Attenuation is caused by several effects which occur at
the phase boundaries. Basically these effects are due to viscous drag, heat
conduction between the nhases, and an additional loss mechanism due to mass
transfer by condensation or evaporation of liquid. Rayleigh particle scatter-
ing can also occur, but this source of attenuation :an be neglected when the
sound wavelength is large compared ts the particle dimensions. Several
authors have calculated the sound attenuation by small spherical particles
suspended in a viscous fluid. Sewell (Ref. 12). for example, considered the
case where the particles did not move with the sound wave but were station-
ary in the fluid. Epstein (Ref. 13) in a more rigorous analysis examined the
attenvation of oscillating pzriic’es in a viscous fitad. Epstein's theory s
quite complicated, and consisted of setting up expressions for the particle
velocity in tte oscillating fluid in terrs of vector and scalar potentials.
Epstein considered boih rigid and elastic particies anu was able to derive
Sewell's formula for the particle attenuation #s a special case of the general
theory,

Unfortunately, Epstein's theory fails to take into account the
change of sound velocity of the mixture with frequency. i.e. dispersion, and
the theory is valid only when the density of the gas to the density of the sus-

pended particles is very small, In a later paper Epstein and Carhart (Ref.
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14) treated the problem of sound attenuation by particles due to both viscosity
and heat conduction. The effect of heat conduction will be considered in Sec-
tion B of this chapter.

Zink and Delsasso (Ref. 15) used Epstein and Carhart's theory
to calculate both the attenuation and sound velocity in several particle filled
gases. The theory was compared with experimental data taken in tae audio-
frequency range. Zink and Delsasso assumed ideal gas conditions and used
a step-bty-step method to calculate the sound velocity in the miixture for each
frequency and particle size. It was found that the agreement between theory
and experiment was quite good over the limits of experimenial erro The
theory outlined balow for the veslocity dispersion and al.sorption due to vis-
cous drag between phases is a different approach to that used by Epstein. A
comparison between tliese two approaches (Appendix D) shows that the pre-
sent theory is quite general in its application, and that Epstein's solution is

valid only under certain circumstances.

2. Effect of Viscous Drag on Sound Propagation

The nature of the viscous drag process has been investigated by
Lamb (Ref. 16) who considered the effect of viscosity on the period of a spher-
ical pendulum oscillating in a viscous fluid. Lamb found that the force X
exerted by the fluid on a sphere of radius, Ry, oscillating with angular fre-
quency w is

1 9 \d 9 1 1 i 1
X = m [~ ¢+ -—-(Ug-Uf)+--mgw + (Ug U;) (4.1)

2
2 4pR, [at 4 BR,  B°Rg
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where (Ug - Uf) is the instantaneous relative velocity between the fiuid and
sphere, Bzsz is the frequency parameter meZIZ))g, and mg is the mass of
fluid displaced by the sphere. The first term on the right of equation (4. 1)
gives the correction to the inertia of the sphere while the second term gives
the frictional or drag force proportional to the relative velocity. The equa-
tion of motion of a spherical droplet can be written as

4 3 duU 4 4 dU
pf—wa———=X+p.—-1er —& (4.2)

3 dt g 3 dt
where Pg * 4/3 'rer3 dUg/dt is the external force produced by the sound
wave. Assuming sinusoidal mction of the fluid of the form Ug = Ugo exp iwt
and that the droplet lags in general the fluid oscillation by phase angle £ ,
where Uf = Ufovexp i{wt -€£ ). The solution of equations 4.1 and 4.2 for tae

relative amplitude ratio (Ugo - Ufo/Ugo) and phase angle ¢ between the

motions is given by:

U _ -U 1 - 3
_go fo _ ( pglpf’ (4.3)
Vi w3
ugo \fo + (1 + O
£ = tan 8 ) {4.4)
O+ 1

where
1 9 p

® = |- + _g (4.5)
2 4(3Rf Pg
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and

9 1 1 P
0 = — —— | ! + — -£ (4. 6)
4 ﬁRf \ BRf Ps

These functions have been calculated in a mixture of saturated hydrogen va-
por containing liquid hydrogen dr‘dplets at several pressures, These plots
are shown in Fig. IV-1 for relative amplitude and phase. It may be seen
that when the parameter ﬁzRf2< 10"3, the droplets and vapor move with
equal amplitude and phase during sound propagation. Alternatively, when
ﬂZRf2>102, the relative velocity amplitude reaches a maximum, that is .
Uf°-90, and as a result the droplets remain stationary in the sound field.
The effect of the drag force given by equation 4. 1 on the sound velocity in the

two-phase mixture can be seen by writing down the wave equation for the

mixture.
2 2. ‘
U U 1 - aq 1 X
9% _ e’ 99 - (4.7)
2 2 3
dt d x a / /3R e, At

Equation 4 7 is denved in Appendix C by consldermg the fluid forces acting
on an elementary volume of vapor due to pressure, inertia, and phase drag.
The second term on the 1:ight side of the above equation clearly takes into ac-
E:q‘unt the relative motion between the phases. For instance, as d X/.) t->0‘.
s&;h as would be the case at high frequencies when BZRf2> 102, the effective
sound velocity will be that of the vapor. This 'i.s the situation when the drop-

let 1s large and/or when the frequency is high. Eliminating N X/B t from
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the wave equation by the relation between Ug and Uf at 2ny instant, and by
considering Ug to bé of the form Ug = Ugo exp i(wt + kx), where k = iav - w/c,
¢ being the phase velocity and a, the amplitude attenuation coefficient it can

be shown that: . ¢

Con © /1 -q\ ©(1 +0) + 0° Py

(4.8)

H

Pomd

+
i

2
c q (1 + @)° + o2 Py

and

c 1 - gq
B, = av)\w = 7 (1 -8 ‘ (4.9)
‘ Coo q /(1 + (D)

where p_ is the attenuation/wévelength Moo due to viscous effects, If the

apparent increase in the inertia of the droplet is neglected, i.e. ® =0, the

attenuation becomes: ’
1/2
3(2y _w) 6y
o, = N, anZ _8 + —8 . (4. 10)
‘ Coo o R¢

This expressicn is identical to Sewell's formula for the viscous attenuation
in a fluid containing N particles of radius f{f per qnit;volume. It is of in-
terest to note that Sewell's formula gives a finite attenuation at the low fre-
quency limit w = 0. The reason for this error is that Sewell aggumed the.'
droplets to be fixed in space which is only 'true at high frequenciess. A com-
parison of the present expression for the viscous attenuatlon is mad.e w1th

'Epst.em s formula in Appendix D. It is noted in Appﬁndw D tha.t Epstem 8
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formula is an approximation of equation 4.8, This is because Epstein neg-
lected te take into account velocity dispersion and higher values of the gas to
particie density ratio as weil as omitting certain ccefficients akove the fourtt
power in his formula,

Changes in the sound velocity and attenuation using the foregce-
ing theory have been cailcula‘ed for liquid hydrogen- vapcr mic‘ures at seversz
pressures and dryness fractions cver the range of irteres.. These results
are plotted in Figs. IV 2 through iV-4. it may be seen that the value f the
frequency parameter BZRfZ determines the magnitude of the scund velocity
ratio (c/c(,o‘;'2 and attenuation per waveiength g, for 3 g:ven pressure and
quality q. For example, at a quality of 0.7 and 3 pressure cf 74, 1 it /’in“)'_n

. , . -2 2, 2 2
velocity dispersion occurs over the range 10 < @ R, < 10°. This means
that at values of 62Rf2< 10-2, the dreoplets and vapor are n dynamaical equs.
ibrium with little or no dissipa®ion of sound energy cccurr.ng due to drag st
the phase interfaces. In other wcrds at very low fregquencies and,cr with
very small droplets, the tcta? mass of the i uid is effect: ‘e dur:ag wave pre

. 2. 2
pagation. Thus under these conditicns ¢ /¢, - gq. As rhe frejuencv s

P4 2
raised or more specifically as $ R{' increases, the dreplets cerrribute less
2 el -
of their total mass to the vapor densiiy. A termina’ vaiue of § Rf >0 s

therefore reached when the droplets remain stationary 'n the vaper thereby

it
-

. . . ) . o 2
contributing nne of their mass to the prepaga-cv, Ar vziues of § R, >0
the effective density of the muxture wili be that of the «apcr alcne, and the
propagation will be governed oniy by the thermodynamic properties of the

vapor,
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Sound Absorption Per Wavelength (uv)
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IV. B. COMBINED EFFECTS OF HEAT CONDUCTION AND VISCOSITY

ON SOUND PROPAGATION

1. Introduction

The problem of heat conduction between tiie phases during sournd
propagation has been examined by Epstein and Carhart {Ref. 14’ for gas-
particle mixtures, They derive an expression for the wave a2-tenuaticn due
to heat conduction between the gas and particles but no account is takern of
the case of the evaporation and condensation of liquid when the par-icle is a
dreoplet. In order to simplify the problem of heat ex.change in the liguid hy-
drogen-vapor mixture it is assumed in this discussion that n : phase change,
i.e. mass transfer occurs during sound propagation; the only he .t exchange
taking place is that of conduction. This assumption is justified only undev
certain circumstances, nama=ly that there is a critical vaitve of the gual:ty,

q cuch that a pressure increase does not promote phase change, 1.e.
dq/dp = 0. Valucs of this critical quality q. have been calcuia*ed for several

pressures in Appendix E,

2. Effect >f Heat Conduction on Sound Absorption

[t nhas been shown by Epstein and Carhart that the sound attenu--

tion due to heat conduction is given by

4R,k C
Qyy T g .28 _ 1 {l1 +aRr, |1 {4.11}
o0 g Pg \ vg

4u



where

1 12p C 9p 2C 2
I = 1+ g 0P8 g _PE (4.12)
nRg . 44 20 2
Pt pfo n Ry Pr Tpfo
2R.5 - w2 /2 is th diffusivity, The function I__ det
n £ = (x)‘ f (I.g: O.g 18 € gas adl .USIVI Y. e function an eter -~

mines to what extent temperature changes influence acoustic wave propaga-
tion, When InR? 1. the frequency is too rapic to permit heat conduction
into a liquid droplet. Alternatively, when InR? 0, as at very low frequen-
cies, complete heat exchange takes place between the phases in the acoustic
time period. As a result of this the droplets remain in temperature equili-
brium with the sound wave. Thus, over the range 0<Ian< 1, sound dispor-
sion and attenuation occurs due to heat conduction effects between the separ-

ate phases. The above formula (4. 11) for the attenuation due to heat conduc-

tion may be written as

1 - ¢ N\ 1
i = = . - 1V 13 —_— 3 { !
by L 1rpg/pf (v, 1Y {1 + nRy) — 3Ian\4.1 a)
9. n Rf

This yields the absorption per unit wavelength (APL due to heat conduct.on in
terms of the frequency paraimeter nZR.fZ and critical quality q.. A plot of
3T0 against anfZ for a liquid hydrogen-vapor mixture at atmospheric pres-
sure is shown in Fig. IV-5, It is to be noted that the value of the critical
quality for the mixture under these conditions is 0.375 (See Appendix E).

A comparison of the absorption curves for the cornbined effects

of viscous drag and heat conductiun is shown in Fig., IV-6. As the viscous
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drag cepends upon the parameter BZRfZ and the heat conduction upen nZsz,
the absorptioa is plotted waZ for both effects. It may be seen that both ab-
sorption curves follow a similar trend over the range of dispersion for the
mixture. In particular, the peak absorption is seen to occur at approximate-
ly the same frequency. For a droplet radius of 10 u, the frequency at which
maximum zbsorption occurs is of the order of 160 cycles/sec. It must be
pointed out, however, that the frequency at which peak ahsorption occurs is
in this approximation independent of the quality, q, and does not in itself pro-
vide a2 means of measuring quality by sound absorptioa techniques. This may
be demonstrated by referring to Figs. IV-2 through IV-4 for the absorption
due to viscous drag in which the absorption peaks for various qualities all lie
close to the same value of BZRfZ.

Figure IV-6 shows drag effects to predominate at high frequen-
cies. The peak absorption due to this effect occurs at a slightly higher fre-
quency than that of heat conduction. Below the peak region of the curves ab-
sorption due to heat conduction slightly dominates that of viscous drag, on.
the other hand, above peak absorption the converse is true, and the viscous

drag absorption is greater (than that caused by heat transfer) by at least 50 9,

over a wide range of frequencies.

3. Effect of Heat Conduction on Sound Velocity

To calculate the sound velocity change with frequency due to
heat conduction between the phases in liquid hydrogen-vapor mixtures the fol-

lowing simplified analysis is proposed. It is assumed that the mixture contains
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equally sized droplets distributed homogeneoucly throughout the vapcr which
is considered an ideal gas. At the cryogenic temperatures under considera-
tion, hydrogen behaves like a monatomic gas whose ratio of specific heats,
Y i8 1.667. This is because both the rotational and vibrational degrees of
freedom: of the diatomic molecule remain inactive below about 60°K and o=niy
the translational energy contributes to the specific heat of the gas. At low
frequencies, there will be a specific heat ratio for the mixture, Yo! when the
total heat capacity of the droplets and vapor will be effective during wave pro-
pagation. This results from the time period of the wave being larger than
the time required to distribute the heat generated during an acoustic period
uniformly throughout the liquid and vapor. Since the specific heats of the gas
and liquid are extensive properties, then for a homogeneous mixture at very

low frequencies

= - .13
Cpo qccpg t({l-q) Cpfo , (4.13)
and
Cvo = ACyg t 1 - adCp 14.14)
Furthermore, since Cpg/cvg =y, for the gas,
c +(1-q) B
po U Yos 9 -
Y, = — = -5 (4. 15)
vfo
Cvo q. * (1 - q.) C
vg
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where y  is the low frequency specific heat ratio for the mixture, and Cpfo
is the low frequency specific heat at constant pressure for a droplet. The
values of Cpfo and Cvg may be found listed under the physical properties of
hydrogen. it is assumed for the purposes of calculatian that Cpfo = Cvfo'
This is approximately true for any liquid. Thus, both the low and high fre-
quency specific heat ratios may be calculated for the two phase mixture since
the effective value of specific heat of the liquid at high frequencies is zero.

In the intermediate frequency range over which velocity dispersion occurs
due to a quasi-relaxation of the droplet specific heat, we may define an effec-

tive heat capacity for the droplet and an effective ratio of specific heats of

the mixture both dependent upon the frequency.

Cp eff qccpg (1 -q0) Cpf eff (4.16)
and
Coeff = 9Cug T {1 - ) Cpp gy (4.17)

The variation of (Cpf) off with frequency may be found by considering the

function InR in equation 4. 12 for the attenuation due to heat conduction.
f .
The meaning of InR may be interpreted as follows: For N droplets of equal
f

size InR N represents the effective number of droplets not abosrbing any
f
heat from the gaseous phase. The effective heat capacity of a droplet at a

given frequency is the difference between the total heat capacity of the droplet
(zero frequency), Cvfo’ and the fraction of its heat capacity not absorbing any
I i.e.:

heat for the gas, C

vfo an’
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(Cvf)eff = vio CvaIan

also,

(Colleri = pto = Cptolnr,

Substituting this expression for (Cvf) off and (Cpf) off in equations 4. 16 and

4.17 and dividing by C

g
(1 - q)
c v * c Cpfo (I - Ian)
( E) 7 Yoy - o "g) (4. 18]
- q
c pfo nR
C f
Ve

This expression for Yeff is plotted in Fig. IV-7 against the frequency para-
meter nZRfZ for a hydrogen mixture of critical quality 0.375 at atmospheric
pressure. It is seen that Yeff increases very slowly with anf from about
1.19 for the low frequency specific heat ratio (yo) to 1.67 at high frequen-
cies (y,, ). Thus uver the range 6 x 10_3< nZRf2<lOZ, velocity dispersion
is seen to occur due to the thermal lag in the heat capacity of the dzjobi.et.
For droplets radius of 10 g, this frequency range varies from about 30
cycles/sec to about 365 Kc/sec. It is of interest to compare this frequency
range for dispersion due to heat conduction with that for viscous drag under

the same physical conditions, For viscous drag it may be seen from Fig.
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IV-2 that the dispersion ranges from 6 x 10-3< ﬂZRf2<102. This range
corresponds to frequencies from about 15 cycles/sec to 260 Kc/sec for

droplets of 10 p radius,

4. Combined Effects of Heat Conduction and Viscosity on Sound Velocity

in order to calculate the sound velocity change with frequency
it is necessary to combine the effects of drag and heat conduction. By assum-

ing the mixture to be an ideal gas, the sound velocity c is

[ o4 =

Yo P
Z eff ~ (4.19)

peff

The effective value of the specific heat ratio from equation 4,18 is

(1 -q.)
Yo * Cpfo (1 - Ian)
= vg
Yeft =
(1 -~ q.)
9 7 Cpfo(l - Iir )
C f
vg

and for viscous drag dispersion (see Section A, equation 4. 8) by:

2 2

/1 ~q\O(l + @) + 90 p
adl I 1+( < 1 - -8
c . /O + 0)% + 0% iy

\

in this case

85



2 Yo P 2 Yoo P
COO = ——— a.nd C =

Pg Peff

since the above dispersion equation is derived on assumption of no heat ex-
change between phases, i.e. Yeff = Ypo for all frequencies. Thus, the above

expression yields the effective density change with frequency in the mixture:

2
1-q \NO(1 +0) +0 o
1 + ¢ 1 - &

(1 + (D)Z + 02 Pg

(4. 20)

i
©

Pets
N e

Combining the above formulae for Yot and Poff in equation 4.19 the sound
velocity in the mixture c, may be calculated as a function of the product

2
wR These results are plotted in Figs. IV-8 anc IV-9. It is seen that for

K
values of w.Rf2< 10-7, thermodynamic equilibrium exists between the phac :s
during sound propagation. This corresponds to frequencies less than about
15 cycles/sec for droplets of 10y radius, and yields a value of €00 ft/sec
for the equilibrium sound velocity, c. This value is an exce.lent agreement
with that calculated from the thermodynamic properties of the hydrogen mix-
ture for a quality of 0,375 at atmospheric pressure {see Section II-B}. At

3 the high frequency sound velocity of 1150 ft/sec is

values of wR<f2>10-
approached. This checks very well with that calculated from the properties
of the hydrogen gas (see Section II-D).

This agreement let;ds support to the validity of this theory of

velocity dispersion due to both drag and heat conduction. It must be emvha-

sized, however, that the heat conduction theory is only applicable at values
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of the critical quality q. when no evaporation or condensation of liquid oc-
curs at the phase interfaces. For all other qualities account must te taken

of mass transfer. This is considered in Appendices A and B.

RQ



IV. C. PRESSURE PULSE PROPAGATION IN THE TWO-PHASE

HYDROGEN MIXTURE

In this section the problem of the propagation of a pressure
pulse in a mixture of hydrogen vapor containing liquid droplets in suspension
is considered in relation to the dispersion and absorption properties of the
mixture. It is assumed that the amplitude absorption coetficient as well as
the phase velocity are known functions of the frequency and quality. These
functional relationships have already been established in Section IV-A for
the velocity dispersion and absorption in the mixture dge to drag effects.
Thuese results will be used ia the following analysis. ;I‘he object here is to
provide an analytical description of the propagation of varying pressure pulses
through the mixture, and attempt to relate this description to the quality.
Such a description may be expected to reveal the changing pressure pulse
sbape both in spzce and time and to suggest some quantitative means by which
the quality could be determined experimentally,

Several abortive attempts were made to analyze the propagation
of a single pressure pulge of arbitrary form in the hydrogen mixture. The
following approach was, however, found to be quite success“il: A series of
pulses of a given shape and having a periodicity Tp or repetition rate l/’rp
is assumed, Such a series of pulses may t;e represented by a Fourier series
of which a finite number of the initial terms in the series represent an ade-
quate physical description of the pulse, This implies that a good approxima-
tion of the pulse at any instant is given by a finite number of appropriate sine

and cosine terms, namely



m
a
p(x,t) = .22 + -—é, A, (x) cos B (x,t) (4. 21)
j =

where p(x,t) is the pressure associated with the pulse at any point x and
timc t as the pulsc propagates through the dispersive media, It is assumed

that the amplitude attenuation of each component is of the form:

Aj {x) = aj exp [- a, (wj) x] {4.22)

aj is the Fourier coefficient of the jth component at x = X, the reference

point. The phase Bj (x,t) will be of the form:

w.X
I ot (4. 23)

c (m‘])

Each component represents a progressive sinusoidal wave whose amplitude
is decreasing exponentially according to the frequency dependent amplitude
attenuation coefficient a, (wj) and whose phase velocity is given by the fre-
quency dependent term c (wj). At any position x and time t the components
of the Fourier series may then be calculated and combined algebraically to
obtain the pulse wave form at a particular point.

A wide variety of pulse shapes were considered and the triangu-

lar pulse shown below was selected for detailed analysis:

7



Triangular Pulse

A

The Fourier series description of such a pulse is given by

!
|
|
l

a, = l/,(p (4. 24)
z'rp' ind

a = 1 - cos —— (4.25)
2.2
™) 'Cp

To start the pulse at time t = 0, equation 4.21 has to be modified so that

a Lt X
p(x,t) = -—22 + . E «':1j exp[- a, (wj) x] cos wj [C o - {t - ‘ellﬂ(‘l. 26)
J

To evaluate a (wj) and c .(wj) for each frequency to account for
both absorption and velocity dispersion reference may be made to Fig. Iv-3
in which the velocity dispersion ratio (c/cg )2 and the absorption per wave-

length p_ =a_ (w)/\ (w) are shown plotted against the frequency parameter
v v P g q

62



ﬂzR fz. It must be emphasized, however, that these graphs account for only
viscous drag between the hydrogen vapor and liquid droplets and do not in-
clude other dispersion mechanisms such as heat and mass transfer between
the phases. Consequently in this analysis of pulse propagation only the con-
tribution of viscous drag to the dispersion is considered. It is also noted that
the sound velocity -, refers to the high frequency nondispersive vapor velo-
city. This is calculated in Section II-D from the known thermodynamic data
for hydrogen v-~.por,.

To analyze the propagation of the triangular pulse the following

calculations are made
1. A duty cycle, l/TD = 1/4 is assumed.

2. A gas pressure of 74,3 lb/iuZ and a quality of 0.5 are
selected to represent the physical conditions of the liquid
hydrogen-vapor mixture. This permits both the velocity
dispersion and absorption to be calculated under these con-

ditions from Fig. IV-3.

3. The pulse repetition frequency l/'l'p is chosen such that
the value w; = 2w /'(p lies in the range of frequencies in
Fig, IV-3 where the dispersion is pronounced and where
the absorption reaches a maxima. This frequency w, is

selected from the value of W, = ﬁzsz x nglsz.

4., Two values of w are selected: wp = 1,07 x 103 and

W, = 0.25 x 103 r?dians/sec which lie on either side of

the absorption maxima shown in Fig, IV-3 for q = 0.5.
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5. Five harmonics of w, are taken tc be representative of the

frequency components of the triangular pulse.

6. The Fourier coefficients a., a,, ... ag corresponding to

Wis Wys «ev Wg are calculated from equation 4. 25,

7. Two points x = 0 and x = 4,0 incu are selected as the

" points at which the pulse shape is to be calculated,

8. The amplitude attenuation cozfficient a_ (wj) is calculated
from

B (w.) w.

a, (w.) = v 3 J

J 2nc (wj)

9. The phase velocity c (wj) is calculated from

10. Finally, the pulse pressure distribution at x = 0 and
x = 4.0 inch is obtained as a function of time t from

equation 4, 26,

The results of these calculations are shown plotted in Figs. IV-
10 and IV-11, It may be seen that taking the first six terms of the Fourier
series gives a very good approximation to a triangular pulse., On comparing
the pulse shapes at x = 0 and x = 4.0 inch it is seen that for wy = 2.5 x 102

rad/sec there is little difference in shape or displacement but for Wy = 1.07

3
x 107 rad/sec a marked phase shift and change of pulse shape is apparent.
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It may be tentatively suggested from the results that any small
change in quality is unlikely to significantly affect the shapes of these pulse '
curves. In view of the limited time available it was decided not to pursue

any further the problem of pulse propagation,
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V. SUMMARY

Sound propagation in a two -phase fluid depends not only upon the
relative masses of the phases, that is the quality, but also upon the size and
spatial distribution of the constituent phases.

The propagation velocity is shown to increase with sound fre-
quency. At very low frequencics the velocity depends only upon the quality,
whereas at intermediate frequencies, the velocity is a complicated function
of baoth the quality and aggregate phase sizes. At high frequencies the velo-
city approaches a fixed value, which is related directly to the properties of
the predominant phase in the mixture.

Calculations for the low frequency velocity agree with those re-
ported by other workers. Experimental data for the high frequency velocity
in other two-phase fluids support the view that the propagation is governed by
the dominant phase alone. This assumption-is used in calculating the high
frequency velocity in the liquid hydrogen-vapor mixture.

Calculations at intermediate frequencies lead to complicated
expressions for the wave propagation constants., This is true even for an
idealized two-phase fluid as, for example, a vapor fog containing uniformly
spaced droplets of equal size,

Simplified expressions taking into account drag and heat trans-
fer between the phases yield estimates of the relaxation times or time con-
stan's associated with these processes. These time constants determine the
region of frequency and aggregate sizes of the individual phases in which

these parameters have little effect on the propagation constants.
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The sound velocity and absorption have been cal.cuia.ted using a
simplified model. This model is valid only for one particular value of the
quality (critical quality). At the critical quality no evaporation or condensa-
tion of liquid takes place for adiabatic pressure changes. |

At qualities greater than the critical value, the calculated time
constants due to heat conduction are further increased because of the addi-
tional heat transfer needed to evaporate the liyuid., For qualities less than
critical, adiabatic pressure increases pioduce condensation which increase
the effective heat tranafer. The detailed computation accounting for the mass
transfer rate between the phases (in addition to simple heat conduction) in-
volved estimates of the temperature gradients in the vicinity of the phase
boundaries.

The precise meaning of the terms low, intermed’a*e, and high
frequencies used in the text is relative and their magnitude and range is deter-
mined by the droplet size and quality of the two-phase mixture. To illustrate
tke dependence of the frequency ranges on droplet size T2Lle I has been con-
structed for a mixture of liguid hydrogen and vapor of critical quality at at-
mogpheric pressure.

Application of the analysis given in this report i¢ a direct mea-
surement of quality in two- phase flow are limited to situations where the ag-
gregates, i.e. droplets in fog or vapor bubbles in liquid, are exceedingly
small. For normal droplet distributions working sound frequencies would,
of conven’® nce, lie in the intermediate range where the propagation veivcity
"depends on the aggregate size as well as the quality. Methods of separating
the unknown variables, thai is the aggregate size and quality are, as far as

is known, beyond the frontiers of present knowledge. Using low frequency



TABLE 1

DEPENDENCGE OF FREQUENCY ON DROPLET SIZE FOR HYDROGEN

MIXTURE OF CRITICAL QUALITY AT ATMOSPHERIC PRESSURE

Droplet Low Frenuency
Diameter 2Rf Range
2p < 1500 ¢/s
20 < 15¢/s
200y < 0.15¢c/s

2mm < 0.0015 c/s

Intermediate

frequency Range

1500 c/s- 36.5 Mc/s
15 c/s--365 kcis
0.15c¢c/s--3650 «c/s

0.0C15c/s--36.5 «c¢/s

High Frequency
Range

> 36.5 Mc/s

> 365
> 3650 cls

kc/s

> 36.5 cfs

It is to be noted that the low and high frequency sound velocities 1n the
mixture are approached asymptotically {see Fig. IV-9).
this the low and high frequencies given in Table I are calculated to be
those corresponding to the case when the sound velocity is within 3 %

of its final value.
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sound waves in aggregates of droplets or bubbles of moderate size involves
cifficulties of measuring very small phase differences in a progressive wave
in the presence of turbulent noise and multiple réflected wave:s.

Calculations of the change of “he shape of pulses propagating
through the liquid hydrogen-vapor mixture are illustrated with examples. It
is found that in the dispersion region the changing pulse shape is too rapid tc
permit any precise measurement to be made of the complex propagation velo-
city.

In the presence of more complex two-phase flow regines as for
example, annular or slug fiow, the sound propagation will be unpredictable
both in space and time. Under these conditions coupling between closely
spaced sound transducers could perhaps indicate:whether the fluid between
them is, at any particular instant, predominantly? liquid or vapor. The rela-
tive duration ot the passage of liquid or vapor at femy location could provide
basic information on the phase distribution.

The result that at high frequencies the sound velocity is a func-
tion only of the simply connected phase and not of dispersed droplets or bub-
bles may be utilized in two-phase flow research to measure the flow velocity
of the dominant phase. This would permit the slip velocity between the phases
to be determined provided the velocity of the dispersed phase is independently

known,
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VI. CONCLUSION

Acoustic techniques have a specific, though limited application
for supplementing the more conventional experimental methods used in two-
phase flow research.

Useful data could be obtained by measuring the flow velocity of
the dominant phase either in fog or bubble flow using an acoustic Doppler
method. In the more complex flow regimes it may be possible to resolve
the spatial phase distribution by the.differences in acoustic coupling when
the fluid flows between sound transducers

The original idea of determining the quality of a two-phase fluid
by measuring the sound propagation constants has been shown to be subject
to many difficulties; the exception being the special case of exceeding sr all
flow aggregates,

Further development of instrumentation along the former lines

is recommended.
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APPENDIX A

TEMPERATURE AND DENSITY FLUCTUATIONS ASSOCIATED
WITH SOUND WAVES IN TWO-PHASE FLUIDS

1, INTRODUCTICN

The periodic fluctuations in pressure involved in the transmis-
sion of sound waves in a gas, produce fluctuations in the gas temperature and
density in accordance with the laws governing isentropic change. For an ideal
gas, this leads to the following equation for the temperature and density of che

gas associated with its pressure at any instant.

Y
T Y - 1 Y
—_— = .f_ = ..p_ (A-l)
To Po Py
The speed of sound ¢, is determined by the well known equation
c2 = —g—g (A-2)
P/s

where 5 denotes isentropic changes in the gas. From equations 1 and 2 the

speed of sound in an ideal gas is readily found to be:

¢* = yplp (A-3)



In a two-phase medium the pressure fluctuations produce neglig-
ible changes in the temperature of the liquid phase due to the relative incom-
pressibility of the liquid compared with the compressibility of the vapor.

The resulting fluctuation temperature difference between the vapor and liquid
causes heat transfer to take place between the phases and reduces the ampli-
tude of the temperature fluctuations in the vapor from what they would be if a
liguid phase were not present. The temperature fluctuations are no longer in
phase with the pressure fluctuations since time is required for the transfar

of finite amounts of heat, and the fluctuations in the vapor temperature, there-
fore, lead the pressure fluctuations.

To perform an analysis of heat transfer between the phases it is
required that the geometry of the phase boundaries be idealized to a simple
shape. This appears to be physically justifiable for two kinds of two-phase
flow; droplet or dispersed flow and bubble flow. Other types of two-phase
flow are described in Appendix H and do not seem to permit this same kind
of idealization. Dispersed or droplet flow is showvn in Appendix H to exist
over a wider range of quality than other types of two-phase flow. For this
reason, and because the assumptions required in the analysis seem physically
justifiable, two-phase droplet flow is selected for the following detailed

analysis.

2. THEORE TICAL MODEL

In droplet two-phase flow the droplets of liquid are dispersed

uniformly in the vapor. Heat transfer phenomena take place in the liquid



droplet and in the region of vapor in the neighborhood of each droplet. It
seems reasonable to idealize the actual geometry of the regions involved in
the transfer of heat to one tnat is spherically symmetric. In this idealization
the vapor space is treated as a spherical shell about a droplet of liquid as
shown in Fig. A-1.

If all the droplets of liquid can be assumed to be of the same
size, the temperature fluctuations at corresponding points in the vapor about
each droplet will be the same, and heat will not ilov‘/ 'between the vapor associ-
ated with one droplet and that 2ssociated with neighboring droplets. The outer
spherical shell of the vapor, Rg’ in the assumed model is therefore taken as
insulated. Dimensions of the droplet and spherical shell are chosen so that the

proportion of vapor and liquid is the same in the model as in the flow case

under consideration,

R 3 q P

8 - 1 - £ (A-4)
R, 1 -gq Pg

a. Boundary Conditions

, A sound wave of angular frequency, w, is considered to be pass-
ing through the two-phase medium. The wavelength over the frequency range
of interest will be large with respect to the size of the heat transfer model and

the pressure in the model can be considered to be uniform at any instant.

P < @(B + p ei“’t) (A-5)



e S insulated or adiabatic
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- 7\ boundary
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FIG, A-1 SKETCH OF MODEL ASSUMED FOR
HEAT TRANSFER ANALYSIS
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(i) Interface Temperature

Since each phkase consists of the same component, diffusion
processes do not occur and the rate of evaporation or condensation is con-
trolled by the transfer of heat. The temperature at the liquid-vapor inter-
face is the saturation temperature corresponding to the pressure at any in-
stant, The saturation temperature is convenient.y found from the empirical

relation shown below:
Imp = A - B/"I‘s (A-6)

If the amplitude of the pressure fluctuations is small, a linear
relation can be assumed for the resulting fluctuation in the saturation tempera-

ture. The saturation temperature is also a harmonic function in this case.

T, = R(T, + 1, Y (A-T)
where
dT_ TSZ
T,' = — . P = — p (A-8)
dn Bp

(ii) Evaporation or Condensation at Interface

Evaporation or condensation will cause the radius of the drop to
be time dependent and the principles of mass and energy conservation have to
be applied at the liquid-vapor interface in terms of the velocity of the fluid

relative to that of the boundary.



For mass conservation

uRf de]
P — = p | U - — (A-9)
Eoat g [ g(Re) gy
For energy conservation
dR DT dR T
SHp — -k, —[ = Hp U(R)-—f]-k —E|  (a-10)
dt or g8 g (R dt g dr
Ry Ry
Employing the definition of the latent heat of vaporization,
Hfg = Hg - Hg
the velocity of the vapor U_ at the interface becomes
( — f)—g')
p JT ?T
U, = >~ f k, —E . k, —f (A-11)
Py Hfg dr R, dr R,

It will be shown later in this Appendix that the temperature
gradient will also be a harmonic function with time for the case where the
interface temperature is harmonic. In view of this the mass flow between
phases is also harmonic if the density, thermal conductivity aud latent heat
of vaporization can be regarded as constant over the range of temperature

and density fluctuation,

A-6
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de'
. -k, — (A-12)

g g f

pg Hfg dr R dr R

f f
where
iwt

U = U
g g

T(r,t) = % [T + T'r) ei“’tJ

(iii) Insulated Outer Shell

To satisfy the condition of no heat flow across the outer spheri-

cal shell the temperature gradient must be zero at this point,

gT _ 4T - 0 {A-13)
r dr

Rg Rg
3, TEMPERATURE DISTKIBUTION IN THE DROPLET

Heat conduction in a sphere with a uniformly varying surface

temperature is governed by the equation

}(r?-
R
N

)_ L _);._ (A-14;

Q¢ t




A solation to this equation which satisfies the harmonic temperature varia-
ticn a: the intertace has the form of a product of two functions, one of the

space co-ordinates only, the other a harmonic function of time.
. = it -
T{r,t;] = %LTS + T'{r) elw] (A-1%)

Substituting equation 15 into equation 14 gives,

d '/rz -d—T—>
_1_ E dr iw

= 2o (A-16;

r dr ar

which can be simplified tc

= 2 F (A-17)

" = F/r (A-18)

A general soluation for equation 17 is

F = Asinh [2 r + Bcosh [ ¢ {A-19)



From equation 18

Lim F = 0
r-»0

and the constant 8, therefore, must be zero to satisiy this condition.

F = Asinh [ ¢ (A-20)

The other censtant, A, is evaluated from the condition that
= T '

T'(Rf) s

This leads to

TI - T v (J“Zl)

To determine the gradient at the interface the above equation is differentiated

and evaluated at r = Rf.

dT!' T "-’in
—_— = 5 f coth»
dr Rf RfL ar

Alternative forms of this expression can be obtained by separating the real

-1 (A-22)

and imaginary parts.



dT T, sinh 2/\ - i sin 2/\
- Slas+sah - -1 (A-23)

dr R R cosh ZA - cos ZA

f
where
A /'ZRT

N 29

4, TEMPERATURE DISTRIBUTION IN THE VAPOR

Due to the compressibility of the vapor, the equations govern-
ing heat transfer in the vapor are not the same as in the liquid. In this case
the governing equations are obtained by applying the conservation laws of
mass and energy.

The mass flow into any region of the vapor space is equal to the

rate of accumulation of mass in that region.

2
— rpdr = erU (A-24)

The rate at which internal energy is accumulated involves three
effects; the internal energy carried in by the moving vapor, the work done by

compression, and the energy loss by conduction.



R

g
9 rszdr = rz(pUE + pU - k }T) (A-25)
dt g dr

Differential equations which correspond to these integral equa-
tions are obtained by simple differentiation.

Conservation of maas:

_L g(rsz) + ’ap = 0 (A-Zé)
r2 }r Bt

Conservation of energy:

'B I_Z ’BT
kg dr J(pE) 1 D (r2pUH)

+ —_— ——— (A-27)
r2 ‘ar Dt l‘2 ‘)r
where
H = E + plp ‘ (A-23)

It will be assumed here that the vapor can be treated as an ideal gas.

p = P/RT (A-29)

E = C.,T (A-30)

A-11



H = C.T (A-31)

Employing these relations the energy equalion becomes

,} rZ ‘3
K Dr C, 40 G, p 0(r’U)
2

—_— - Xy ' (A-32)

r2 ’Dr R dt r }r

The pressure appears here as a total derivative sinc- it is assumed to be
uniform in the model and therefore not a {unction of the space co-ordinate.
To eliminate the velocity terin in the above equation, the mass

conservation equation {equation 26) is expanded as shown below.

dp _ U o (A-33)
P

Substituting equation 29 into the above equation gives,

10¢%) . 1,1 d1 U 3T (A-34)
r dr p dt T ot p'ar

Substituting this expression for the velocity term into equation 32, gives the

following for the energy equation.

2 oT
i&?( %r)_ AT U AT 1 dp

r2 /Br )t Rp )r pCp dt

(A-35)

A-12



where

It is quite evident that the velocity is nect eliminated by these substitutions.
Howeve., it now appears in a second degree term. The magnitude of the
velocity is shown in equation 11, to be proportional to the temperature grad-
ients. Consequently if one considers pressure waves of decreasing intensity,
the magnitude of the product U’)Trar decreases in proportion to the square
of the pressure fluctuations, whereas the other terms decrease as the first
power. For small amplitude pressure waves, or for sound waves, the term
involving the velocity can be neglected and one has the form shown below as

the governing equation in the vapor.

z’bT

a 1 dp
_5 - — - (A-36)

1‘2 r Dt pCp dt

This equation can be solved by methods similar to those used in

the liquid. Substituting equations 5 and 15 into equation 35 gives,

d 1.2 dT'
a dr iwp!
£ > =z iwT' - —— (A-37)
2
T d C
r P p

A-13



The general solution to this equation is

]
T = B, C  Jir D I (A-38)
pCp r r
where
Il - ket (A-39)
a
g

Applying the condition that the temperature gradient must be
zero at the outer radius of the spherical shell (equation 13), leads to the

following relation between the coefficients.

R_+1
Jig__ e-Z.ﬂ.Rg (A-40)

C = D
LR -1
g

Equation 35 can now be expressed as

' -JLR
™ = 2, De E iR + 1e
r (AR, - 1) g

(A-41)

Satisfying the ccndition that the temperature fluctuations at the interface match

those of the saturation temperature (equation 7) defines the coefficient D.

A-14



R LR, - 1) Mg

CL P
o - (n §
pCp}:rLRg - 1) en(Rg - Ry) + (J'LRg + 1)e (Rg - Ry)

(A-42)

The final expression for the temperature distribution is then,

(mg _ l) e-‘l(Rg-l‘) + (J-LRg + 1) e-.ﬂ.(Rg - 1')

('Q'Rg -1 e-ﬂ-(R --Q(Rg - Ry)

(A-43)

g‘Rf)+(fle+1)e

Differentiating with respect to r and setting r = R gives the

temperature gradient in the vapor at the vapor-liquid interface.

( - p‘)
8
dT!

PCy/ .

dr R

f

(LR, - 1) (ARg 1) - (AR, + ) (R, - 1) LR, - Ry

o 2R, - Ry)

NR, - 1+ (J'LRg + 1)
(A-44)



5. VOLUME FLUCTUATION

Two factors are involved in the volume fluctuation of the as-
sumed rnodel. The density of the vapor fluctuates due to the changing tem-
perature and pressure, and the mass of vapor also fluctuates due to the
alternate evaporation and condensation occurring at the interface. An

appropriate expression relating these factors is

R

al & dR
2 2 £
— dr = R S A-45
dt o " e gy Ve (R T (B
f

The fluctuation of the outer radius is obtaincd by taking the

derivative on the left hand side of the above equation inside the integral.

3 R
1 dR R U
g o TE) Pe®p TE(Rf ' grzb—p_dr ( f-46)
3
R dt
g Rg/ g (R Rg R, pg (R ) dt

R¢

If only small disturbances are considered the vapor density

may be regarded as the same at R, and Rg and the equation may be sim-

plified to,
3 R
1 dR R U 1 g , de
— Y g (Rf) £ —_ dr (A-47)
3 ?
R dt R R R t
g g f g e n

A-16



The volume fluctuation is then obtained from the relation,

1 av 3 dR

- = — £ (A-48)

vV dt R dt

3 Rg

1 av R U 3

- = 3| f g (Rf) 2 20 4 (A-49)
3
vV at R R R ¢ Dt
\ & d g fg_ R,

Equations 12, 23 and 44 give the contribution to the volume
fluctuation due to evaporation and condensation.

To determine the contri-
bution due to the density variation, the integral on the right hand side of the

above equation is expressed in terms of the temperature and pressure.

Differentiating equation 29 gives

Qe . lde 1
Dt p dt T ot

"

© |-

(A-50)

The derivative of temperature with respect to time may be
eliminated through equation 36,

(A-51)
bl ‘Br

A-17



This equation may be used to evaluate the integral in equation
49 if only small disturbances are considered.

R
1 & , Do 1 dp 1 3 3 1 ) 2T
—_ r" =— dr = — — — (R~ - R;) - — a_R ] (A-52)
P ‘)t yp dt 3 g T & br R
g £
R
where
R C - C 1
1 - — = 1 - P v = -
Cp Cp Y
The volume fluctuation is then
3 3
1 4v /R Ug (R,) 1 R, dp
—— cmn— = 3 ——— - —— l - —— ——
vV dt KRg R YP R, dt
3 R, 3 1 DT
- = (—) — g (A-53)
T Rg Rf Br R

Since the volume is a harmonic function, the above equation
may be expressed as

3 \ 3 '
3 R 1 4T
fr) Tewp [ (R [° f g
—— = - ———a— — - nrm— — T ame — ——
v 5 g
A\ w Rg Re Rg ye T Rg R, dr Rf
(A-54)
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where

V,euot

<
i
<
+

6. SOUND VELOCITY

The sound velocity in a single phase fluid is given by equation
2. In a two-phase fluid, the vapor may not be compressed or expanded
isentropically because of the effects of heat transfer. However, if equation
2 is interpreted in terms of the spatial mean pressure and density over a
volume containing a large number of droplets, the vapor and liquid taken in
aggregate would be isentropic. This interpretation should be valid if the
sound wavelength iy large with respect to the mean distance between the
droplets.

The sound velocity may be expressed in terms of the equation

obtained for the volume fluctuations in the following v ay.

de de
2 - [2p\ _ @& _ _ LA ' (A-55)
dp S dp P 1 dv pV'
dt vV dt
where
P = b, +lps - p,) A-56
P Pg * (pg Pgt a ( )
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7. SUMMARY

The sequence of steps required to compute the velocity of
sound are as follows. From the quality of the mixture the ratio of radius

of the -~apor shell to that of the drop is first computed.

R qQ P

f
&8 = \[1 - - (A-4)
R \ 1 - q Pg

The amplitude cf the pressure fluctuation is arbitrarily as-

sumed and used to calculate the fluctuation in the interface temperature.

2
TS
T = p (A-4)
Bp
aT,’ T ' sinh 2/l _ i sin ZA
f‘ L Ty | ; 1] (A-22)
dr lP- R, ‘__ cosh2l - cos2 A J
where
}wa
fL= |-
Zuf
TS' . b
aT '
2 PCp
dr |Rf Rf
2R - R
AR - NNR, + 1) - VIR + 13(/1R, - e g £
g f g £ (A-43)
-zﬂ(Rg - Ry)

NR_ -1+ {R_+ e
g g
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where

. dT’
k -k, (A-12)
g (Rf) g 1
Pngg dr Rf dr R{
) 3 3
V! 3 ' '
v R R ?
w g | ¢ Rg Yp
3a_ (R, 3 0 ar i
- Bl =) — g (A-54)
T \R, R, dr R,
c? = - p' (A-55)
v ( )
— + - .
- Py Py -~ Py

The sound velocity obtained this way is a complex number,

and, as explained in this report includes the attenuation as well as the
speed of propagation,

Unfortunately the results of this analysis require extensive
computations,

The above list of equations would not present much diffi-

culty if only real numbers were involved. However, many of the variables

A-21



are complex (real and imaginary}. The intricacy of the equations seems
tc preclude rationalizing them into ;eparate expressions for the real and
imag:nary parts. Instead most of the arithmetic operations have to be per-
formed in complex arithmetic.

As many digital computers now have the capability of per-
forming computations in complex arithmetic, use of such computers would
appear necessary for performing the required computations. The IIT
Research Institute, has such a computer which could well perform these
calculations. However, owing to limitations of time and funds, etc., its
use is not anticipated at present. Instead approximate relaxation times
are evaluated from solutions to the differential equation for the case of a
unit step change in interface temperature. The details of this work are

described in Appendix B.
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APPENDIX B

APPROXIMATE RELAXATION TIMES FOR LIQUID
DROPS SURROUNDED BY VAPOR

Relaxation times are an indication of the time required for a
system tc restore its equilibrium after an initial disturbance. The model
in Appendix A is assumed to have a unif~-— temperature distribution
initially and is then submitted to a sudden expansion or compression. In
the liquid the temperature is at first unaffected. The temperature at the
liquid-vapor interface is the new saturation temperature corresponding to
the changed pressure. The temperature in the vapor is initiaily that ob-
tained from an adiabatic pressure change (Eq. A-1).

Approximate estimates of the subsequent time-temperature

histories in the liquid and vapor are given in the following calculations.

1. RELAXATION TIME OF THE LIQUID

The equation governing radial heat conduction in the liquid,

Q)
0
>
1
P
1~
-
n
(54

ransformed to that for a flat silab by the transformation,
-’# = r{T - To) {B-1)

After applying this transformation, Eq. A-14 becomes



BN ¥4

LARNTTAE

% 10 B2

sz ag bt

Boundary conditions after the transformation become,

-~ ~S-
PN -
] 2]
ot (]
~ ~
] n
(=] 2

A solution to Eq. B-2 for these boundary conditions may be

found in Ref. 17,

2 2
aft_] ™

_ o

! j R
d = RAT -T)| = + 2 CU sinfin = e f (B-3
f°7s "ot p 4 i R
; £

f =1

The average temperature in a droplet is then found from Eqs. B-1 and
B-3 and the integral shown below
R¢

T = —3— rZTdr
3
R¢

(B-4

0



The result obtained is

2 2
aftJ L

2

oo
R
=T+(T_T,iz LI f (B-5)
S s ° 2 2
™ A
i=1

J

=

Terms in this series with j greater than unity decrease with
increasing time much more rapidly than the initial term., For practical
purposes the relaxation time can be obtained by considering only the first
term in the series. The relaxation time is by the usual definition the time
required for the disturbance to decay by the factor, 1l/e. Considering only
the first term, this occurs when the exponent is equal to unity. The relaxa-

tion time is, therefore,

Tf = (B-6)

To solve for the temperature distribution in the vapor, the
governing equation (Eq. A-36) is put into the same form as the equation
for the liquid. This is done by replacing the temperature by a new variable
which is the difference between the temperature of the vapor and the tem-
perature the vapor would have if the pressure changes took place adiabatic-

ally.,

AT = T - T —p—>y (B-7)
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For small pressure changes this may be linearized to

vy-1T,
AT = T - — (p - p,)
Y P,
Since
Y- R %
Y Cp CppoTo
AT = T -T_ - —— (p-p) (B-8)
(o] [¢]
PCo

Substituting Eq. B-8 in Eq. -.-36 gives

) v

05
2

2
r ’ar >t

(B-9)

This equation may now be transformed to that for a flat slab.

W = 1 (AT - AT)) (B-10)



The result is

2% _ 1 ¢
X DY

(B-11)

The boundary conditions for the transformed variable are,

%(r,O) = 0 (B-12)
t}/(R{,t) = RAT, (B-13)
where
y - 1
- pY VY 14
AT, = T_ - T (- (B-14)
p0

At the outer radius of the vapor shell, the insulaied surface boundary condi-

tion transforms as snown below.

oT
9

¥R (B-15)

H
o)
H

Equation B-10 may be solved by the method of Fourier series.

A general solution is



x 2

-a . t
= E ; - - gl
\'U = A + Br + [Cj sin )\j (r Rf) + Dj cos )‘j (r Rf)] e

)=1 \B-16)
Evaluating the coefficients from the boundary conditions gives

o0 -)\-Zu t

sin \. (r - Rf) e
(}1 = AT_|r - 2R J (B-17)
2
=1 M [R f]

i AN{(R -R,)-R
gsm J( g f)
where

A. = tanX.(R_ - R -18
R n J( g f) (B )

g1l

The average temperature in the vapor is then obtained from

the expression below,

AT = ——=2 r ATdr (B-19)

Performing the integration gives,

2
oo - a_t\.
L 6Rf2 e &I
AT = AT -{AT - AT)) —
8 8 ° 3 3 2 :

(B-20)
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For computational purposes it is advaniageous to put this

equation in a dimensionless form. A new variable is defined as

. = NA{(R_ - R -21
(*’J J( g f) (B )
Substituting in Eq. B-20 and rearranging terms gives finally,

aQ w 2t
. g J
2 R 2
R 2
6[-8 1] =2 R(—£ -1
— Rf € Rf
T = AT -(AT_ - AT)) (B-22)
] 8 o 3
R ] 2[R
£ -1 J = wj —8 sin wj -1
R¢ Ry
where
1
w, cot w, = —0 (B-23)
J J R
f
1l - —
g

As in the equationfor the liquid, the first term in the series
decreases with time much more slowly than the others. For practical pur-
poses only the first term in the series needs to be considered. The time
constant is the time for which the first term has decreased by the factor

l/e, or where the exponent is equal to minus one:

2 R 2
R -£ .1
£
Ry
T - (B-24)
g Qg(&)l

The constant Wy is the first root of Eq. B-23.
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APPENDIX C

DERIVATION OF THE WAVE EQUATION TAKING INTO ACCOUNT
DRAG BETWEEN THE LIQUID AND VAPCR PHASES

It has been shown in Section IV-A that when a sound wave is
propagated through a homogeneous mixture of saturated hydrogen vapor and
droplets, the relative velocity between the phases is dependent upon the value
of the frequency parameter BZRfZ. From what has been stated, each droplet
opposes the vapor acceleratior by the force X given by equation 4.1 Section
IV-A. Because of this body force the dynamical equilibrium for an element-
ary volume of vapor undergoing pressure fluctuations in the sound wave must
be modified, The following analysis ie used to derive the wave equation tak--
ing into account this force.

Consider unit mass of a mixture of liquid hydrogen and vapor
and assume there are N droplets each of mean radius R suspended uniform-
ly in the vapor. Then the number of droplets .per unit mass of vapor i3 N/q,
where q is the quality,

Each droplet oppnses the vapor acceleration by the force X.
Therefore, the total reaction force on the vapor caused by N/q droplets per
unit mass of vapor is - NX/q. The problem now reduces to determining the
effect of this extraneous force on the wave equation.

Consider the equilibrium of unit volume of vapor of density *p,

at rest and bounded by sections x and x + 5x at time t.

*¥Elsewhere the vapor density is referred to as pg.



Condensation of element gx is:

pti)-x = po(l + s) gx (C.1)
where

P - P, Dp
S = — = ———

e P

and
dp . , 9= dp . , Js
dx ° Bx )t ° Bt

The continruity equation for the elementary volunie is

-bt Bx g
where
Ug = Ugo exp 1 (ot + kxj (C. 3)
where
k = ia - 2
c
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c being the phase velocity and a, the attenuation coefficient due to drag.

The dynamical {Euler) equation for the forces acting on ine element is

dU JU D
pl —& + U g gx = - é\x - -pX gx C.4;
\at g Bx Dx q

Since the velocity amplitude is very smali, Ug BUg/Bx car be neglected in
equation C. 4, then,
du 1/dp\ Jp N

-] — - =X {C.5;
ot P dpsbx q

—— = —

The suffix S denotes an isentropic grocess in the vapor. Since,

..%E = P, % and pOJ—Lp (small density fluctuat:ons)
-3

Equation C.5 becomes,

—— - S— X (C'();

dpS

From equation C.2

)U )p

p —EB = - —_  (since U_ is small) (C.7)
Bx 3t g

and since,



[T by 2

bt | 3x \dt

Differentiating equations C.6 and C.8 with respect tc t and x gives

2

U dp Js N 90X
2% o [Py ey T 7 (C.9
2t dp /¢ dt \ dx g Ot
and

BZU 2 Js

E - . L — (C.1
-5 x2 B x B t
Combining equations C.9 and C. 10 the wave equation is obtained
PR g\ du, N X
—f - -8 _ _ (c.1
2 2 ~
0 ép Jg B x q Ot

In the case of a mixture of liquid tydrogen and vapor. the mass of liquid pe:

unit mass of mixture is
(1 -q) = N. 4 TR

where Ps is the density of liquid hydrogen. Accordingly, the wave equation

C.1! for the two-phase mixture may be written as

T3



[ e ] [ [ ] L] [~ -] —— a_— m— onin a——

2 2

U, 2 9 U, /1 - q) I X
—_— = C.p e

Dt Vx> q %anpf ot
where

1s the sound velocity in saturated hydrogen vapor (high frequency value).



APPENDIX D

COMPARISON OF PRESENT FORMULA FOR ATTENUATION DUE
TO VISCOUS DRAG WITH THAT OF EPSTEIN AND CARHART

In Section IV-A it has been shown that the attenuation due to
viscous drag, a 2sa function of the frequeicy parameter ﬁzRf , and quality

g, is given by:

w (1 - q) P Y c
a S e —— 1 - _§. (D-l)
v , 2, .2 '
Co0 q Pg (1 + @) + 8 cpo
where
2102
Coo (1 - q) P O(l +0) + 0
—— = 1 4+ —r [ 1 .- _8 \_ (D.2
c q R py / (1 + !l))2 + 92

Epstein and Carhart (Ref. 14) on the other hand quote the formula for the

atteauation due to viscous drag as

(mNRf
= ~ 5 ‘D, 3
O,E . Vg {1 + ﬁRf,s IE yD. 3;
Cos
where
‘ 16[34Rf4
1. = - {D.4)
E 2
P : P
16[34Rf4 + 72 & [33Rf3 + 81 _g.> [1 + 2BR. + szRfZ]
Pg Pe



The problem here is to show that under certain circumstances both the pre-
sent theory and that of Epstein and Carhart represent alternative ways of

describing the same phenomenon; that is, av‘-r—La In equation D, 3, N is

Ec

the number of particles per unit volume

p, (1 - q) 1
N = £ (in terms of the quality)

Pf q - "Rf

e, = - £ (1 + BRY) I (D.3a

Rearranging equation D. 1

2a (I - q) P c 1
a = f 1 - _Ejo
v 2 2
Coo q Py Ce (1 + @) +0
2w (I ~q) e, 9 (1 +BR,) p c 1
a = f _.g_-__.__f_. 1 - _8
v 2.2 2 2
Coo a e 4 BR; peJlce (1 +®° +0
sinc:
2
. wR
|3ZR£')‘ - 2f
vg
D-2



a = - £ (1 +PR) D (D. 1

where

)

Coo (l+(D) +0

On comparing equations D.la and D.3a, it is seen that a, = o provided
-1
Dv = IE. Congider the expansion of [(1 + (D) +0 ] in D
1 1
= 2 2

P 1 9 P 81 1 ‘ 2

(1+ )2 +0° 1+ B _ + +{ -8} — R+ 1)
4 4
Ps 2 4{3Rf Ps 16 8 Rf

, 2 2. 2
l+2—§(..+ + Y| -+ +]_8) — 44+
pe \2  4BR, o) L4 48R, o) 16 B R,
P 2
_5) 81 (pzafz + 2BR + 1)
Py



multiplying throughout by 1604R f4

16p%R *

2
[4;34Rf4 + 9p3af3:| "

P P P
16(34Rf4 +16 -8 ﬁ4Rf4 +72 .8 ;333{3 +f 28
Pg Pt Pg

2
f&) 81[1 + 2PR_ + Z[SZR‘Z:] (D.5)
Pt

Comparing equation D.5 and D.4 it is seen that provided powers above the

fourth are neglected in D.5, then:

1

= 1
E
(1 + (D)Z + 92
an “ Po
e, = — 1 - & ap (D.6)
Con P

Thus Epstein's and Carhart's theory fails to take into account
1. Dispersion in the sound velocity due to drag between the

phases in the mixture,.

2. Higher values of the gas to particle density ratio (pg/pf).
Epstein considered only the case where pg/pf<<1, as for

water droplets in air.

D-4
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3. Coefiicient greater .han the fourth power in his function

},E
. 2_ 2
4 AUV S " tue frequency parameter B Rf ~1 when the

frejuency is high and/or when the droplet size is large.

It would appear there‘ore that provided the density ratio and velocity disper-
sion is small and tke frequency low such that powers above the fourth in equa-
tion D.5 may be neglected, the two independent formulae for the wave attenu-

ation due to phase drag are in good agreement,

D-5
NONrEE peey



APPENDIX E

EVALUATION G« THE CRITICAL QUALITY FOR A
TWO-PHASE FLUID

During sound propagation in a two-phase fluid there is a unique
value of the quality when the heat generated by un adiabatic compression ia
the vapor is not used in evaporating or condeusating liquid. In other words
none of the heat transferred by conduction in the vapor or liquid is used io
promote phase change a‘ the liquid-vapor boundaries. This critical quality
can be evaluated in the following manner. Entropy per unit 1. ass of mixture,

S = qug + Sf. For an isencropic change

dS = qufg + Sfo‘lq + dsf = 0

For small pressure changes,

dq ds ds
Sf — + q _fg + _f = 0
& ap dp dp
) ds ds
q ._.._..f_g. + ...._f.
dg . . de dp
d S
[ fg

When there is no phase change during the isentropic process, dq/dp = 0, and

q=9q. is twe critical quality, Therefore,




(de/dp)

Q. = -

(deg {dp)

The value of q. asa function of pressure has been calculated from the
slopes of the entropy-pressure curves for liquid and vapor hydrogen. The
results of these calculations are shown in Fig. E. 1 for both equilibrium
and para hydrogen. Thermodynamic data for the para hydrogen was taken
from Ref. 18, It is seen from Fig. E.1 that for pressures below about
30 psia, the critical quality 9. increases rapidly with pressure. Above
30 psia, however, q. reaches a constant value of about 0,42, although a
slight variation is apparent. The reasons for this variation are not known,
The total change in the sound velocity due to viscous drag and
heat conduction in the liquid hydrogen-vapor mixture is calculated in Section
IV-B at one particular value of the critical quality. The effect of mass trans-

fer on sound propagation is, of course, neglected in this case.
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APPENDIX F

EFFECT OF TUBE DiAMETER ON SCUND PROPAGATION CONSTANTS

The absorption and velocity dispersion of acoustic waves in
fluids contained in narrow tubes due to viscosity and heat conduction has been
analyzed by Kirchoff (Ref. 19) and extended by other authors (Ref. 20). In
general this effect is negligible, but for narrow tubes whose diamete~ is
small compared to the wavelength, the viscous drag in the boundary layer at
the tube walls influences wave propagation. An additional correction also
has to be :made for the heat conduction between the walls and fluid.

Analytical expressions for the corrected sound velocity c', and
attenuation constant a', due to the effects of viscosity and heat conduction at

the tube walls have been derived by Kirchoff. These expressions are given

¢ = c|l - g _ (F.1)

where v‘g is the corrected kinematic viscosity, vg’ and T is the tube

radius, and

1 k
vg T Vg|l? \/vo - (F.2)
c




where Yo is the ratio of the specific heats of the fluid, Also, for the attenua-

tion constant:

al = g (F.3)

Equation F.Z2 gives the correction to the kinernatic viscosity due to heat con-
duction between the tube walls and fluid.. It may be seen from the above equa-
tions that at high frequencies and with tubes of large diameter, the corrected
sound velocity c' approaches the free space velocity ¢. On the other hand
for tubes of very smalil diameter, the effect of viscosity and heat conduction
is to lower the sound velocity and increase the absorpticn in the fluid. It is
of interest tc note that for very fine capillary tubes such that rT<< -Vg/w,
the wall temperature governs the fluid temperature and the process of sound
propagation becomes isothermal rather than adiabatic. This source of velo-
city dispersion will be neglected in the present study.

To obtain an order of magnitde assessment of the effect of tube
diameter on sound propagation a calculati... is given for the mixture of liquid
and vapor hydrogen contained in a narrow tube of 3/16 in.diameter. The fre-
quencies necessary to lower the sound velocity 59 for tubes of this diameter
are obtained for several pressures, The data required to make these calcula-
tions is given in Table F-I.

Values of the critical quality qc are used to calculate y  so that
the effects of phase change on sound propagation may be neglected. The ratio

of the specific heats at low frequency, Y, in equation F. 2 is calculated from
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Voo ¥ C Cpfo
Yo = vg - (F.4)
(1 - q.)
9 4+ C pfo
ve
Equation F.4 has been derived in Section IV-B. Values of kg, Cpg' cpfo’

B, and ))g for saturated hydrogen vapor were obtained from Ref, 21. Sub-

g

stituting this data in equation F.2 gives the corrected kinematic viscosity
v’g from which the corrected sound velocity can be derived. Rewriting equa-

tion F.1 in the form:

where Ac = sound velocity change, (c - c')

A 5° decrease in velocity due to the tube effect gives the frequency f, as

100y’
f = —=F (F.5)
A

2 . .
where A = 7r = cross-sectional area of tube., For a tube of 3/16 in,dia-

T
2 2 -4 tZ'

5
meter, A=w(1/128)" ft- =1,92x 10 " f

At 14.7 psia, 3', =1.09x 10~
ftzlsec, then from equation F.5, f~6,0 cycles/sec. At 48 psia, ))'g =
4,44 x 10'6 ft?'/sec, then, f~2,0 cycles/sec. At 120 psia, V'g =1.87x

10'6 ftZ/sec, then, f~1,0 cycles/sec.



It is to be noted that a frequency of 6.0 cycles/sec would be
required to lower the sound velocity 5% in the liquid hydrogen-vapor mix-
ture of quality 0.375 at atmospheric pressure. This value is considerably
below the frequency of 30 cycles/sec calculated in Section IV-B to yield
the equilibrium sound velocity in the mixture under the same conditions,

It may be concluded, therefore. that the effect of tubes of 3/16

in. diameter on the low frequency equilibrium sound velocity is generally very

small,



APPENDIX G

DERIVATION OF THE FORMULA USED TO CALCULATE THE
HIGH FREQUENCY SOUND VELOCITY

By definition, the sound velocity in a fluid is

where S denotes isentropic conditions. Alternatively this may be written in

terms of the specific volume V, of a gas as

avs

AL vz()" (G. 1)
Enthalpy per unit mass of gas is
H = E + pV

dH = TdS + Vdp

E is the intcrnal energy per unit mass of gas. Thus for an isentropic pro-

cess, where dS =0,

)

| =V (G. 2)
ap/s



Using the firsi law of thermodynamics,

TdS = dE + pdV = 9

Therefore,

_%_E_ = - iG.3)
V)]s

Expressing equation G.1l in terms of H and E, and substituting equations

G.2 and G.3 into G. 1,

2 _vz(?’p BH)
dH/ ?vs

_y2f2e) [3u) (2E
(?H} dE/s \ 3V /g

S

Therefore,

cz - P_/)H {G.4)
P\ 35 ),

Now,

Nu v, | deum |

\2E/g E 2

Then,

PHTITH g -



or

I

<

H , pE J(H/E)
E hj OE s
-
H|, o, EE[MJ 5
E H OE s

The above expression G. S for the sound velocily ¢, as a function of H, E.

P, and p is used to caiculate the high ireauency propaga‘’-on velocity, Cgy

in the liquid hydrogen-vapor mixture. This is discussed in Secticn iI-D.

o2
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LITERATURE ON BOILING HEAT TRANSFER AND
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NOMENCLATURE FOR APPENDIX H

A = area

Ce = specific heat at constant pressure
G = mass velocity

g = acceleration due to gravity
h = heat transfer rate

Hfg = latent heat of vaporization
k = thermal conductivily

NNu = Nusseit number

NRe = Reynolds number

NPr = Prandtl number

(.) = heat flow rate

T = temperature

TS = saturation temperature

P = density

"{t;‘ = Lockhart-Martinelli parameter for turbulent turbulent flow
< = quality Gg/( Gg + G{)

¢ = surface tension

B = dynamic viscosity
SUBSCRIPTS

f = liquid

g = vapor or gas

t = total

TP = .two-phase

SPL = single-phase-liquid



APPENDIX H

LITERATURE ON. BOILING HEAT TRANSFER AND
TWO PHASE FLOW

1) INTRODUCTION

Boiling is the process of heat addition to a fluid resulting in a
change of phase from liquid to vapor. Boiling heat transfer may occur
in systems:

a) where only natural convective forces operate. This process
is known as pool boiling and may be further» sub-divided into
nucleate and film boiling

b) where forced convective forces are imposed which rcsult
in the flow of fluid along a tube or channel. Due to
evaporation the fluid is a mixture of liquid and its vapor
at the saturation condition. This is described as one-
component two-phase flow. The flow of a mixture of a
liquid and some other gas or vapor is described as two-
component iwo-phase flow.

It is evident from the volume of published material that substantial research
effort has been invested in studies of boiling heat transfer and the char-
acteristics of two-phase flow. To a great extent, the heat transfer work
has been concentrated on pool boiling, particularly in the nucleate range.
Two-phase flow studies have been mainly directed to the prediction of
pressure drop, friction factors and choking or c¢ritical mass flow, On
grounds of convenience and the direct applicability of results much of

the work on heat transfer has been carried out using water. Similarly,

with two-phase flow, the studies have been made mainly with mixtures

of water and steam or water and air,



1

Single-component two-phase flow is generally more cc;mplicated
beth ~xperimentally and analytically than two-component two-phase flow,
In addition to momentum and energy transfer there exists the possibility,
with single-component two-phase flow, of mass transfer at tke vapor-
liquid interface with consequent changes in the phase velocities and the
density along a flow section.

Data on boiling heat transfer and the two-phase flow characteristics
of cryongenic fluids and systems are steadily accumulating bui the volume
of data available at this time is too limited and too specialized to allow for
its effective use to accurateiy predict the performance of systems in
general.

2) STATUS OF THE PROBLEM

In 2 recent (1962) comprehensive review Zuber and Fried' have
critically examined the use of available data for predicting the rates of
heat fransfer to liquid hydrogen in particular and other fluids in general
whken 2 change of phase takes place. Both pool boiling and two-phase flow
systems were considered. Their conclusions are so pertinent as to be
worth quoting here in entirety:

a) Nucleate Pool Boiling

'""The proposed correlations for nucleate pool beiling do nou
take into account the conditions of the heating surface. Con-
sequently these equations are not general and cannot predict
the heat transfer rates for any solid-liquid combinations.

For a 'smooth' surface and for a given solid-liquid combination,

2

the equation proposed by Rohsenow® can be used for predicting

the heat transfer rates to liguid hydrogen at various pressures

rY



b)

when the value of a constant {for a particular solid-liquid
combination) is determined from one set of experimental
conditions. An equally satisfactory agreement was obtained
using an equation proposed by Labountzov.?

Quantitative experimental data pertaining to the effect of
surface conditions on the heat transfer rates in nucleate

boiling are very scarce."

Forced Convection with a Change of Phase

""Experimental data indicate that the heat transfer coefficient
in forced convection with a change of phase depends on the
two-phase flow patterns,

Reliable correlation for predicting the two-phase heat
transfer coefficients are not available. The correlation
schemes available in the literature cannc: be used for pre-
dicting the two-phase heat transfer coefficient to !iquid
hydrogen in forced flow.

An understanding of the two-phase flow patterns will be
required before successful correlation of two-pnase heat
transfer coefficients can be made."

Critical Heat Flux Density

"The critical heat flux density to liquid hydrogen in pool
boiling can be predicted from equations available in the
literature.

No general equations that would permit the reliable prediction
of the critical heat flux in forced convection are available.

Experimental data indicate that in forced convection the



critical heat flux can be induced by several mechanisms,"

d) Effect of Reduced Gravity

""The vapor generation is unaffected by a reduction in the
gravitational field whereas the vapor removal depends on
the nature of the force field. Both problems can be analyzed
in terms of information available in the literature."
An independent survey of the literature, including that available subsequent
to the critical review quoted above, does not reveal justification for any
substantial revision of these conclusions.

The mechanism of pool boiling is sufficiently understood except
for the effect of the surface finish of the solid heater or container. Much
more analytical and experimental work remains to be done before a
similar understanding of any two-phase flow system is completely
established.

3) GENERAL DISCUSSION

a) Pool Boiling

Pool boiling occurs when heat is supplied sn as to evaporate
a liquid without the imiposition of forced ccuvective forces, Four distinct
regions may be recognized in which the boiling exhibits uifferent
characteristics, as first recognized by Nukiyama*., These regimes
depend on the temperature difference between the liquid and the solid
heater surface and they may be defined as the convective, nucleate, meta-
stable and stable film boiling regions as shown in Fig. H-1. As the heater
surface temperature rises in a pool of unsaturated liquid natural con-
vective currents are established. These circulate liquid, some of which

evaporates at the free surface. A further increase in heater temperature
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results in the formation of small vapor bubbles on the heater surface
which grow to a critical size, depart and then condense before reaching
the free surface. This is the phenomenon of partial boiling, as it is so
called.

As the temperature difference increases more and larger
vapor bubbles form which rise to the surface, break through it and join
the vapor above the liquid, This is the region of nucleate boiling and is
characterized by increase in both the heat flux and the heat transfer
coefficient with increase in the temperature difference up to a maximum
value called 'the critical heat flux'.

If more heat is supplied to the heater an unstable film of
vapor forms on the solid surface, Large bubbles form on the outer surface
of the film and the film itself collapses and reforms rapidly. The presence
of the film reduces the heat transfer coefficient, a2n effect which consequently
reduces the heat flux to the liquid. This causes an increase in the heater
temperature thus increasing the difference between it and the liquid
temperature and thereby accentuating the formation of the vapor film.

This cumulative process proceeds until the vapor film becomes stable
and continuous with a low heat flux and a large difference in ‘emperature
between the heated surface and the liquid. Eventually, unless the heater
is first burned out, the influence of radiation from the very hot heater
surface becomes significant and the heat flux once more increases. Once
the stable film is established the vapor bubbles form at the outer edges of
the vapor film and the metal surface has little effect,

The region of nucleate boiling is of greatest interest because
this is where the maximum heat transfer coefficients and heat fluxes can

be obtained. Experimental data has shown that the condition of the surface



has a substantial effect on these quantities because both depend not only on
the temperature difference but also on the number of bubbles produced.
The bubble population density depends on the nucleation characteristics of
the surface, an important factor of which is the size of the surface irreg-
ularities. Jakob ~nd Fritz5 investigated boiling on rough and smooth heat-
ing surfaces and found that the heat flux of the rough surface was greater
than that of the smooth, but no satisfactorv correlation of the effect of sur-
face i1regularities appears to have been produced. It may be mentioned
that the relationship between surface roughness and nucleation site density
is being furthar investigated in the Heat Transfer Laboratory of the Illinois
Institute of Technology. 6 This study substantiates the early findings of
Jakob anc Fritz, Kezios and co-workers are also investigating the fre-
quency spectrum of nucleation sites. .

Some two dozen equations have been prooosed to correlate
data in the nucleate boiling region. Most are limited to the range and con-
ditions in which the experiments were conducted but a few have been found
to correlate the experimental results for a number of liquids and liquid-
solid combinations.

One equation proposed by Rohsenowz for 'smooth' surface

is of the form

) . / 2/3
wr_ o 1Y% _ 1ra/a o —‘1'2 N 0.7
£ Lu P Pg Mg fg g (Pf - Pg 2



The constant C has different values for different surface-liquid combina-

tions and must he determined from experimental results available for a

given surface.

Auncther equation recommended for use by Zuber and Fried

when the constant C cannot be determined is that proposed by Labountzov:

h Cop
p'f 0.65 1/3
—_— o"Ts 0.125 NRe NPr

2
kf ( Pngg)

1]

For NRe> 10-2, and

h /2

—_°f s17 - o.0625N, *°N 143
2 s e Pr

kf (Pngg)

R

For NRe< 10.2 where

o, Q/A Cppf oT,

N =
Re 2

H H
Pg Be fg (Pg fg)

(H-2)

(H-3)

(H-4)

For the critical heat flux in pool hoiling Zuber and Friedl recommend the

use of the following approximate equation:

2 1/4

g ~ x/24
5o (pp - 0y

(O/A) crit P

H
Pe g

(H-5)

g (g e



b) Some Aspects of Two-Phase Flow

In general two-phase flow has been classified as:

a)’ one component - a mixture of liquid and its vapor

b) two component - a mixture of liquid and a gas of

different composition.

Other more complex mixtures may exist such as a liquid
and its vapor at saturation conditions with a gas of different composition.
These however do not appear to have been classified or to have received
any significant study.

Many of the characteristics of one component and two com-
ponent flow appear to be similar. One component flow is the more com-
piicated of the two types both analytically and experimentally. This is be-
cause in addition to momentum and energy transfers there may also be
mass transfer between phases at the liquid vapor interface along any flow
section,

A flow equation including these various degrees of freedom
requires knowledge of an accurate flow model incorporating the possitilities
of different phase velocities (slip) and variation in density because of a
change in the quality along the flow section. No satisfactory equalities of
this type have yet been proposed and essentially no work has been done
for the case where the flow patterns are changing. The masé, momentum
and energy transfers at the liquid-vapor interface are all rate processes
which require time to attain their equilibrium values. Although of obvious
importance very little i- <nown about these transfer rates under fiow con-

ditions but many instances of metastable flow have been reported.



Much of the work on two phase flow has been directed to the
identification of the various flow patterns that can exist, the prediction of
two phase pressure drop during isothermal flow and the determination of
criteria for choking or c~itical mass flow.

Ficw Patterus

Martinelli et ai? have idertified four basic types of flow:

'3}  Viscous liquid and viscous vapor

\it) Viscous liquid and turbulent vapor

(iii) Turbuient liquid and viscous vapor
\ivj  Turbulent liquid and turbulent vapor.

They have also suggested the classification of flow in terms of a
Reynolds number,

A comparison of ficw patterns observed by other investigators has
been made by Alves. 8 He listed the following sequence of flow patterns in
a horizontal pipe as the gas phase mass velocity is increased.

{1; Pure liguid

{il) Bubble flow {bubbles move along the upper part of the

pipe at akout the same velocity as the liquid)
{111} Piug flcw (alternate plugs of gas and liquid)
(iv) Stratified flow (vapor flowing above the liquid)
iv) Wavy flow [vapor above a wavy liguid surface)
{vi) Slug flow (periodic frothy slugs pass through the pipe
at a greater velocity than the average liquid velocity)
(vii) Annular flow (liquid flows in a film around the inside
wall of the pipe and the gas flows at a higher velocity

as a central core



(viii) Mist or spray flow (gas with liquid antrainment flowing
in a pipe with wetted walls sometimes called '‘fog flow')
(ix) Pure gas

In a one component system in which boiling occurs the ratio of liquid to
vapor changes with distance from the entrance of the pipe and therefore
the flow patterns change., Given eufficient heat flux or length of pipe the
whole spectrum of fiow patterns listed above will exist until at sufficiently
high qualities mist, fog, or spray flow develops.

Correlations of flow patterns in two phase flow have been. presented
in chart form by Baker.9 Krasiakova, 10 and by Lunde, 1 Baker's chart
was prepared specifically for the flow of two componeunt oil and gas mix-
tures in oil pipe lines from the data of Jenkins, 12 Gazley, 13 Alves, and
Kosterin, 14 Later the chart was used by lsbin et al 5 for steam water mix-
tures, by Leonhard and McMordie16 for Freon 12 and by Bronson et al
for liquid hydrogen. Fair agreement wae noted between the types of flow
observed and those predicted by the Bakcer chart,

The Baker chart has been used here for a study ol the effect of the
total mass flow rate and saturation temperature on the {low patterns of
hydrogen for isothermal flow at the saturation condition., Tte results are
presented in Figs. H-2 to H-5. The ordinate Gg/h and (Gf/Gg) )\(P
were used by Baker following a suggestion by Holmess18 where \ and (‘\l/

were defined as follows:
1/2 -
A = [(pg/0.075)(pf/62. 5)] (H-6)

and

H-13
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1/3
(/J = (13/V) po(éz.s/pf)‘2 (H-7)

In Fig. H-2 a series of curves are presented for hydrogen flow rates
ranging from 10% to 10" b £t"% br™'. The quality of the mivtyre, defined
as Gg/(Gg + Gy) is shown at the principal points. The curves ascend
from right to left, that is as the mass of fluid in the vapor phase increases.
The transition of the flow patterns is clearly shown. The eventual change
to the dispersed or fog flow occurs at different values of the quality depend-
ing on the flow rate. Figure H-2 was prepared for flow at the saturation
conditions corresponding to 25°R and Fig. H-3 for saturation conditions
at 54°R. In Fig. H-4 the two curves for the 100,000 1b ft.2 hr_1 flow
rate at temperatures of 25°R and 54°R are¢ compared. Although closely
adjacent and parallel for most of their length there is a considerable differ-
ence in the location of specific values of the quality as shown. From this
diagram and other similar plots for dilferent saturation conditions, Fig.
H-5 was prepared. This shows the effect of quality and saturation tempera-
ture on flow pattern for a total mass flow rate of 100,000 1b £t~ 4 thl. One
important result which should be noted is the relatively low quality at which
the hydrogen assumes the dispersed flow regime.

Other diagrams for different rates of mass flow may be prepared.
The shapes of the curves obtained are similar but their location is different
as might be expected from Figs., H-2 and H-3.

At present there is insufficient experimental data to confirm or

deny the validity of the use of Baker's chart for such predictions,

P



c) Critical Mass Flow

When the flow at the discharge of a constant area or converg-
ing area device is such that a reduction in the downstream pressure will
not increase the mass rate of flow the condition is referred to as choked,
critical, or mass limiting flow. It can occur in every fluid regarded as a
compressible fluid.

Critical mass flow for the pure gas phase is well understood
and theoretical solutions for some ideal flow cases do exist. Recently
(1963) S‘mith19 has prepared a choking two-phase flow literature summary
and he supplemented this with design charts for a number of cryogenic and
other fluids. The idealized solutions provide upper and lower limits for
actual flow cases and reasonable agreement with experimental results may
be observed.

d) Two Phase Heat Transfer

Two phase heat transfer processes are not well understood.
The subject was reviewed by Collier20 and since then other publications
have become available. Various methods and correlations have been pro-
posed for predicting the heat transfer rates. Rohsencww21 proposed a
super-position method considering the heat flux to be made up of a boiling
flux and a convective flux. In other cases, the use of pool boiling equations
above have been proposed. It has become clear however that in fact several
modes of heat transfer prevail as progressive vaporization takes place
along a duct. A typical characteristic of the local evaporating heat trans-
fer coefficient versus exit quality for several mass flow rates is shown in
Fig. H-6. Zuber and Fricd1 have described the three regions thought to

prevail:
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""Region 1 is the nucleate boiling region in which the heat
transfer coefficient is independe .¢ of quality. In this region, the
vapor formation occurs at the heating surface in the form of bubbles
that grow, detach and subsequently become dispersed in the flowing
liquid. It is thought that in this region the heat transfer is governed

by the mechanism of nucleate boiling.

Region 2 is the forced convective region in which the heat
transfer coefficient increases with quality. As the quality increases
along the duct, the increased velocity of the two-phase mixture in-
duced by the vaporization process suppresses the nucleate boiling
process, and beyond this point the heat transfer becomes governed
by the forced convection pro.ess. The actual flow pattern of the
two-phase mixture is not known. Some researchers believe that
only a liquid film is in contact with the solid surface. Others be-
lieve that the liquid is in the dispersed phase *nat is continuously

being deposited and re-entrained frorn the heating surface.

Region 3 is the liquid deficient region in which the heat trans-
fer coefficient decreases with increasing quality. In this region, the
liquid film no longer wets the surface. The heat transfer is no long-~
er due (0 a highly conducting liquid film but to a poorly cenducting
gas as a consequence of which the heat transfer coefficient sharply
decreases. "

For correlating data in Region 1, equations have been used
which were originally proposed for nucleate pool boiling, including the equa-
tion of Rohsenow quoted above,

22

Sterman et al  correlated data for water and ethanol using

a relation of the form:

0.7
: 1.45 1/3a""
N A H
(NyaTp 6150 Q/__ f_g) [ g (H-8)
(Nnu)spL Pefighs | Pg \Cst

H-21



where the single phase Nusselt modulus was based on liquid properties and

the two phase Nusselt modulus was given by:

- 172
h g
_ TP
£ g \Pg Pg

. - 7
In Region 2 most correlations are based on the Lockbart-Martinelli

parameter Xtt defir.ed by

1 0.9 0.5 0.1
x Ps s
—_ _£ (H-10)
X 1 - x
Pg K¢

ard are of the form

= const| — (H-11)

Wide variation in the value of the constant and the index 'm' have been re-
ported and no reliable method of prediction is available. Experimental
boiling heat transfer coefficients for hydrogen have been reported by
Mulford et al, 23 Class et al, 24 Malkov et al, 25 Brickwedde, 26 Weil et al, ol
Drayer et al, 28 and by Graham et al, 29 There were considerable differences
in the experimental conditions and apparatus used so that a general correla-
tion of these results is not possible,

Parker and Grosh30 in a study of the heat transfer to a mist

flow of steam measured very high heat transfer coefficients for annular-mist
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flow., At higher qualities the coefficients decreased with a diminution of
the liquid film,. At a critical value of the tube wall temperature a drastic
reduction in the heat transfer coefficient was observed probdably due to the
onset of the liquid deficiency described above.

There is therefore a vital need for much further basic re-
search on heat transfer effects in two phase flow. Measurements are re-
quired of the local values of heat transfer coefficients, quality and differ-
ential phase velocities. Further studies of the flow patterns in two-phase
flow are required. Some effort should be made to assess the significance
of the physical characteristics of the fluid, the conditions of the surface,
the flow rate and the heat flux in determining the points at which the tlow
patterns change. In other words, it is essential to the general understand-
ing of two-phase flow that suitable criteria be established to allow accurate

identification and prediction of the flow regimes.
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